高數(shù)數(shù)學(xué)建模論文范文

時間:2023-12-20 17:32:18

導(dǎo)語:如何才能寫好一篇高數(shù)數(shù)學(xué)建模論文,這就需要搜集整理更多的資料和文獻,歡迎閱讀由公務(wù)員之家整理的十篇范文,供你借鑒。

高數(shù)數(shù)學(xué)建模論文

篇1

數(shù)學(xué)建模可以提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生不怕吃苦、敢于戰(zhàn)勝困難的堅強意志,培養(yǎng)自律、團結(jié)的優(yōu)秀品質(zhì),培養(yǎng)正確的數(shù)學(xué)觀。具體的調(diào)查表明,大部分學(xué)生對數(shù)學(xué)建模比較感興趣,并不同程度地促進了他們對于數(shù)學(xué)及其他課程的學(xué)習(xí).有許多學(xué)生認(rèn)為:"數(shù)學(xué)源于生活,生活依靠數(shù)學(xué),平時做的題都是理論性較強,實際性較弱的題,都是在理想化狀態(tài)下進行討論,而數(shù)學(xué)建模問題貼近生活,充滿趣味性";"數(shù)學(xué)建模使我更深切地感受到數(shù)學(xué)與實際的聯(lián)系,感受到數(shù)學(xué)問題的廣泛,使我們對于學(xué)習(xí)數(shù)學(xué)的重要性理解得更為深刻"。數(shù)學(xué)建模能培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)進行分析、推理、證明和計算的能力;用數(shù)學(xué)語言表達實際問題及用普通人能理解的語言表達數(shù)學(xué)結(jié)果的能力;應(yīng)用計算機及相應(yīng)數(shù)學(xué)軟件的能力;獨立查找文獻,自學(xué)的能力,組織、協(xié)調(diào)、管理的能力;創(chuàng)造力、想象力、聯(lián)想力和洞察力。由此,在高中數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模知識是很有必要的。

那么當(dāng)前我國高中學(xué)生的數(shù)學(xué)建模意識和建模能力如何呢?下面是節(jié)自有關(guān)人士對某次競賽中的一道建模題目學(xué)生的作答情況所作的抽樣調(diào)查。題目內(nèi)容如下:

某市教育局組織了一項競賽,聘請了來自不同學(xué)校的數(shù)名教師做評委組成評判組。本次競賽制定四條評分規(guī)則,內(nèi)容如下:

(1)評委對本校選手不打分。

(2)每位評委對每位參賽選手(除本校選手外)都必須打分,且所打分?jǐn)?shù)不相同。

(3)評委打分方法為:倒數(shù)第一名記1分,倒數(shù)第二名記2分,依次類推。

(4)比賽結(jié)束后,求出各選手的平均分,按平均分從高到低排序,依此確定本次競賽的名次,以平均分最高者為第一名,依次類推。

本次比賽中,選手甲所在學(xué)校有一名評委,這位評委將不參加對選手甲的評分,其他選手所在學(xué)校無人擔(dān)任評委。

(Ⅰ)公布評分規(guī)則后,其他選手覺得這種評分規(guī)則對甲更有利,請問這種看法是否有道理?(請說明理由)

(Ⅱ)能否給這次比賽制定更公平的評分規(guī)則?若能,請你給出一個更公平的評分規(guī)則,并說明理由。

本題是一道開放性很強的好題,給學(xué)生留有很大的發(fā)揮空間,不少學(xué)生都有精彩的表現(xiàn),例如關(guān)于評分規(guī)則的修正,就有下列幾種方案:

方案1:將選手甲所在學(xué)校評委的評分方法改為倒數(shù)第一名記1+分,倒數(shù)第二名記2+,…依次類推;(評分標(biāo)準(zhǔn))

方案2:將選手甲所在學(xué)校評委的評分方法改為在原來的基礎(chǔ)上乘以;

方案3:對甲評分時,用其他評委的平均分計做甲所在學(xué)校評委的打分;

然而也有不少學(xué)生為空白,究其原因可能除了時間因素,學(xué)生對于較長的文字表述產(chǎn)生畏懼心理、不能正確閱讀是重要因素。同時,一些學(xué)生由于不能正確理解規(guī)則(3),得出選手甲的平均得分為,其他選手的平均得分為,從而得出錯誤結(jié)論.不少學(xué)生出現(xiàn)“甲所在學(xué)校的評委會故意壓低其他選手的分?jǐn)?shù),因而對甲有利”的解釋,而沒有意識到作出必要的假設(shè)是數(shù)學(xué)建模方法中的重要且必要的一環(huán)。有些學(xué)生在正確理解題意的基礎(chǔ)上,提出了“規(guī)則對甲有利”的理由,例如:排名在甲前的同學(xué)少得了1分;甲所在學(xué)校的評委不給其他選手最高分(n分),所以甲得最高分的概率比其他選手高;相當(dāng)于甲所在學(xué)校的評委把最高分給了甲;甲少拿一個分?jǐn)?shù),若少拿最低分,則有利;若少拿最高分,則不利;等等。以上各種想法都有道理,遺憾的是大部分學(xué)生僅僅停留在這些感性認(rèn)識和文字說明上,沒能進一步引進數(shù)學(xué)模型和數(shù)學(xué)符號去進行理性的分析。如何衡量規(guī)則的公平性是本題的關(guān)鍵,也是建模的原則。很少有學(xué)生能夠明確提出這個原則,有些學(xué)生在第2問評分規(guī)則的修正中,提出“將甲所在學(xué)校的評委從評判組中剔除掉”,這種辦法違背實際的要求。有些學(xué)生被生活中一些現(xiàn)象誤導(dǎo),提出“去掉最高分和最低分”的評分規(guī)則修正方法,而不去從數(shù)學(xué)的角度分析和研究。

通過對這道高中數(shù)學(xué)知識應(yīng)用競賽題解答情況的分析,我們了解到學(xué)生數(shù)學(xué)建模意識和建模能力的現(xiàn)狀不容樂觀。學(xué)生在數(shù)學(xué)應(yīng)用能力上存在的一些問題:(1)數(shù)學(xué)閱讀能力差,誤解題意。(2)數(shù)學(xué)建模方法需要提高。(3)數(shù)學(xué)應(yīng)用意識不盡人意數(shù)學(xué)建模意識很有待加強。新課程標(biāo)準(zhǔn)給數(shù)學(xué)建模提出了更高的要求,也為中學(xué)數(shù)學(xué)建模的發(fā)展提供了很好的契機,相信隨著新課程的實施,我們高中生的數(shù)學(xué)建模意識和建模能力會有大的提高!

那么高中的數(shù)學(xué)建模教學(xué)應(yīng)如何進行呢?數(shù)學(xué)建模的教學(xué)本身是一個不斷探索、不斷創(chuàng)新、不斷完善和提高的過程。不同于傳統(tǒng)的教學(xué)模式,數(shù)學(xué)建模課程指導(dǎo)思想是:以實驗室為基礎(chǔ)、以學(xué)生為中心、以問題為主線、以培養(yǎng)能力為目標(biāo)來組織教學(xué)工作。通過教學(xué)使學(xué)生了解利用數(shù)學(xué)理論和方法去分折和解決問題的全過程,提高他們分折問題和解決問題的能力;提高他們學(xué)習(xí)數(shù)學(xué)的興趣和應(yīng)用數(shù)學(xué)的意識與能力。數(shù)學(xué)建模以學(xué)生為主,教師利用一些事先設(shè)計好的問題,引導(dǎo)學(xué)生主動查閱文獻資料和學(xué)習(xí)新知識,鼓勵學(xué)生積極開展討論和辯論,主動探索解決之法。教學(xué)過程的重點是創(chuàng)造一個環(huán)境去誘導(dǎo)學(xué)生的學(xué)習(xí)欲望、培養(yǎng)他們的自學(xué)能力,增強他們的數(shù)學(xué)素質(zhì)和創(chuàng)新能力,強調(diào)的是獲取新知識的能力,是解決問題的過程,而不是知識與結(jié)果。

(一)在教學(xué)中傳授學(xué)生初步的數(shù)學(xué)建模知識。

中學(xué)數(shù)學(xué)建模的目的旨在培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識,掌握數(shù)學(xué)建模的方法,為將來的學(xué)習(xí)、工作打下堅實的基礎(chǔ)。在教學(xué)時將數(shù)學(xué)建模中最基本的過程教給學(xué)生:利用現(xiàn)行的數(shù)學(xué)教材,向?qū)W生介紹一些常用的、典型的數(shù)學(xué)模型。如函數(shù)模型、不等式模型、數(shù)列模型、幾何模型、三角模型、方程模型等。教師應(yīng)研究在各個教學(xué)章節(jié)中可引入哪些數(shù)學(xué)基本模型問題,如儲蓄問題、信用貸款問題可結(jié)合在數(shù)列教學(xué)中。教師可以通過教材中一些不大復(fù)雜的應(yīng)用問題,帶著學(xué)生一起來完成數(shù)學(xué)化的過程,給學(xué)生一些數(shù)學(xué)應(yīng)用和數(shù)學(xué)建模的初步體驗。

例如在學(xué)習(xí)了二次函數(shù)的最值問題后,通過下面的應(yīng)用題讓學(xué)生懂得如何用數(shù)學(xué)建模的方法來解決實際問題。例:客房的定價問題。一個星級旅館有150個客房,經(jīng)過一段時間的經(jīng)營實踐,旅館經(jīng)理得到了一些數(shù)據(jù):每間客房定價為160元時,住房率為55%,每間客房定價為140元時,住房率為65%,

每間客房定價為120元時,住房率為75%,每間客房定價為100元時,住房率為85%。欲使旅館每天收入最高,每間客房應(yīng)如何定價?

[簡化假設(shè)]

(1)每間客房最高定價為160元;

(2)設(shè)隨著房價的下降,住房率呈線性增長;

(3)設(shè)旅館每間客房定價相等。

[建立模型]

設(shè)y表示旅館一天的總收入,與160元相比每間客房降低的房價為x元。由假設(shè)(2)可得,每降價1元,住房率就增加。因此

由可知

于是問題轉(zhuǎn)化為:當(dāng)時,y的最大值是多少?

[求解模型]

利用二次函數(shù)求最值可得到當(dāng)x=25即住房定價為135元時,y取最大值13668.75(元),

[討論與驗證]

(1)容易驗證此收入在各種已知定價對應(yīng)的收入中是最大的。如果為了便于管理,定價為140元也是可以的,因為此時它與最高收入只差18.75元。

(2)如果定價為180元,住房率應(yīng)為45%,相應(yīng)的收入只有12150元,因此假設(shè)(1)是合理的。

(二)培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識,增強數(shù)學(xué)建模意識。

首先,學(xué)生的應(yīng)用意識體現(xiàn)在以下兩個方面:一是面對實際問題,能主動嘗試從數(shù)學(xué)的角度運用所學(xué)知識和方法尋求解決問題的策略,學(xué)習(xí)者在學(xué)習(xí)的過程中能夠認(rèn)識到數(shù)學(xué)是有用的。二是認(rèn)識到現(xiàn)實生活中蘊含著大量的數(shù)學(xué)信息,數(shù)學(xué)在現(xiàn)實世界中有著廣泛的應(yīng)用:生活中處處有數(shù)學(xué),數(shù)學(xué)就在他的身邊。其次,關(guān)于如何培養(yǎng)學(xué)生的應(yīng)用意識:在數(shù)學(xué)教學(xué)和對學(xué)生數(shù)學(xué)學(xué)習(xí)的指導(dǎo)中,介紹知識的來龍去脈時多與實際生活相聯(lián)系。例如,日常生活中存在著“不同形式的等量關(guān)系和不等量關(guān)系”以及“變量間的函數(shù)對應(yīng)關(guān)系”、“變相間的非確切的相關(guān)關(guān)系”、“事物發(fā)生的可預(yù)測性,可能性大小”等,這些正是數(shù)學(xué)中引入“方程”、“不等式”、“函數(shù)”“變量間的線性相關(guān)”、“概率”的實際背景。另外鍛煉學(xué)生學(xué)會運用數(shù)學(xué)語言描述周圍世界出現(xiàn)的數(shù)學(xué)現(xiàn)象。數(shù)學(xué)是一種“世界通用語言”它能夠準(zhǔn)確、清楚、間接地刻畫和描述日常生活中的許多現(xiàn)象。應(yīng)讓學(xué)生養(yǎng)成運用數(shù)學(xué)語言進行交流的習(xí)慣。例如,當(dāng)學(xué)生乘坐出租車時,他應(yīng)能意識到付費與行駛時間或路程之間具有一定的函數(shù)關(guān)系。鼓勵學(xué)生運用數(shù)學(xué)建模解決實際問題。首先通過觀察分析、提煉出實際問題的數(shù)學(xué)模型,然后再把數(shù)學(xué)模型納入某知識系統(tǒng)去處理,當(dāng)然這不但要求學(xué)生有一定的抽象能力,而且要有相當(dāng)?shù)挠^察、分析、綜合、類比能力。學(xué)生的這種能力的獲得不是一朝一夕的事情,需要把數(shù)學(xué)建模意識貫穿在教學(xué)的始終,也就是要不斷的引導(dǎo)學(xué)生用數(shù)學(xué)思維的觀點去觀察、分析和表示各種事物關(guān)系、空間關(guān)系和數(shù)學(xué)信息,從紛繁復(fù)雜的具體問題中抽象出我們熟悉的數(shù)學(xué)模型,進而達到用數(shù)學(xué)模型來解決實際問題,使數(shù)學(xué)建模意識成為學(xué)生思考問題的方法和習(xí)慣。通過教師的潛移默化,經(jīng)常滲透數(shù)學(xué)建模意識,學(xué)生可以從各類大量的建模問題中逐步領(lǐng)悟到數(shù)學(xué)建模的廣泛應(yīng)用,從而激發(fā)學(xué)生去研究數(shù)學(xué)建模的興趣,提高他們運用數(shù)學(xué)知識進行建模的能力。

(三)在教學(xué)中注意聯(lián)系相關(guān)學(xué)科加以運用

在數(shù)學(xué)建模教學(xué)中應(yīng)該重視選用數(shù)學(xué)與物理、化學(xué)、生物、美學(xué)等知識相結(jié)合的跨學(xué)科問題和大量與日常生活相聯(lián)系(如投資買賣、銀行儲蓄、測量、乘車、運動等方面)的數(shù)學(xué)問題,從其它學(xué)科中選擇應(yīng)用題,通過構(gòu)建模型,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)工具解決該學(xué)科難題的能力。例如,高中生物學(xué)科以描述性的語言為主,有的學(xué)生往往以為學(xué)好生物學(xué)是與數(shù)學(xué)沒有關(guān)系的。他們尚未樹立理科意識,缺乏理科思維。比如:他們不會用數(shù)學(xué)上的排列與組合來分析減數(shù)分裂過程配子的基因組成;也不會用數(shù)學(xué)上的概率的相加、相乘原理來解決一些遺傳病機率的計算等等。這些需要教師在平時相應(yīng)的課堂內(nèi)容教學(xué)中引導(dǎo)學(xué)生進行數(shù)學(xué)建模。因此我們在教學(xué)中應(yīng)注意與其它學(xué)科的呼應(yīng),這不但可以幫助學(xué)生加深對其它學(xué)科的理解,也是培養(yǎng)學(xué)生建模意識的一個不可忽視的途徑。又例如教了正弦函數(shù)后,可引導(dǎo)學(xué)生用模型函數(shù)寫出物理中振動圖象或交流圖象的數(shù)學(xué)表達式。

最后,為了培養(yǎng)學(xué)生的建模意識,中學(xué)數(shù)學(xué)教師應(yīng)首先需要提高自己的建模意識。中學(xué)數(shù)學(xué)教師除需要了解數(shù)學(xué)科學(xué)的發(fā)展歷史和發(fā)展動態(tài)之外,還需要不斷地學(xué)習(xí)一些新的數(shù)學(xué)建模理論,并且努力鉆研如何把中學(xué)數(shù)學(xué)知識應(yīng)用于現(xiàn)實生活。中學(xué)教師只有通過對數(shù)學(xué)建模的系統(tǒng)學(xué)習(xí)和研究,才能準(zhǔn)確地的把握數(shù)學(xué)建模問題的深度和難度,更好地推動中學(xué)數(shù)學(xué)建模教學(xué)的發(fā)展。

參考文獻:

1.《問題解決的數(shù)學(xué)模型方法》北京師范大學(xué)出版社,1999.8

2.普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實驗),人民教育出版社,2003.4

篇2

關(guān)鍵詞:高校;數(shù)學(xué);建模方法;教學(xué);策略;研究

1高校數(shù)學(xué)建模方法的教學(xué)現(xiàn)狀分析

1.1課堂教學(xué)尚未脫離傳統(tǒng)思想

從我國高校數(shù)學(xué)課堂教學(xué)的現(xiàn)狀來看,傳統(tǒng)的教學(xué)理念始終束縛著老師們的思想,他們在數(shù)學(xué)建模課程的講解中,仍舊以講授為主,以理論化的學(xué)習(xí)為基礎(chǔ),給予高校學(xué)生最多的教學(xué)理念仍舊是灌輸式教學(xué),這種教學(xué)模式是當(dāng)代大學(xué)生綜合能力的培養(yǎng)與提高的枷鎖,更讓數(shù)學(xué)建模方法不能在實踐中得到具體的應(yīng)用。

1.2教學(xué)策略缺乏個性化選擇

進行數(shù)學(xué)建模的方法多種多樣,每一種方法都具有不同的應(yīng)用范圍,能解決不同的問題,只有對不同的建模方法采用不同的策略進行課堂教學(xué),才能讓學(xué)生更容易吸引和掌握。

2數(shù)學(xué)建模方法的教學(xué)策略

2.1建模方法的多重聯(lián)合性

多重聯(lián)合不僅可以讓大學(xué)生把多種數(shù)學(xué)建模方法進行聯(lián)系與融合,還能通過它們相互之間的關(guān)聯(lián)性而進行有機的組合,在實際的問題解決中發(fā)揮出建模方法的最大效用。

2.2建模方法的階級遞進

雖然數(shù)學(xué)建模方法是一個實現(xiàn)數(shù)學(xué)知識與實踐應(yīng)用相結(jié)合的工具,是需要大學(xué)生們熟練掌握和嫻熟運用的,但在實際的教學(xué)過程中,因為每個學(xué)生的資質(zhì)不同,接受知識的快慢也不一樣,再加上他們智力水平的差異性,對于數(shù)學(xué)建模方法接收的程度也會受到影響。而老師要想讓每個學(xué)生都能達到數(shù)學(xué)建模合理運用的目的,就必須要掌握每一位學(xué)習(xí)的特點,從他們的數(shù)學(xué)實際出發(fā),因材施教,階級遞進,這樣才能讓各個階層的學(xué)生都能夠得到鍛煉和提高。而且數(shù)學(xué)建模的過程本身就是一個比較抽象的過程,對于初學(xué)者來說,會覺得非常的困難,只有掌握了建模的意義和過程,才能在實踐應(yīng)用中慢慢的去領(lǐng)會,繼而達到實際運用的效果。

2.3建模方法的交叉設(shè)計

數(shù)學(xué)建模方法教學(xué)的目的就是要解決生活當(dāng)中的實際性問題,所以在進行建模方法的學(xué)習(xí)時,一定要把現(xiàn)實情境與理論知識交叉進行學(xué)習(xí),因為離開了實際問題的數(shù)學(xué)模型毫無用武之地,只有把模型知識應(yīng)用到具體的問題情境當(dāng)中,才能讓它發(fā)揮作用,才能讓大學(xué)生們對數(shù)學(xué)建模的學(xué)習(xí)更感興趣,促進他們綜合能力的提升。

2.4建模方法的實踐應(yīng)用

篇3

1.變革教學(xué)觀念,實現(xiàn)教學(xué)方式的創(chuàng)新

教師是對學(xué)生影響最為深刻的客觀因素。在日復(fù)一日的教學(xué)中,學(xué)生認(rèn)識到教學(xué)活動或是教學(xué)行為是否具有創(chuàng)新性,直接決定著學(xué)生的創(chuàng)新性感受和創(chuàng)造性思維的寬度、廣度。所以,要培養(yǎng)學(xué)生的創(chuàng)造性思維,就要求教師要變革觀念,實施創(chuàng)新性教學(xué)。比如,在學(xué)習(xí)拋物線及其標(biāo)準(zhǔn)方程的教學(xué)中,為了體現(xiàn)創(chuàng)新性的教學(xué)理論,給學(xué)生帶來不一樣的學(xué)習(xí)體驗,開闊學(xué)生的學(xué)習(xí)視野。我在本節(jié)課的教學(xué)中,進行了創(chuàng)新性的教學(xué)設(shè)計:首先借助創(chuàng)新性的教學(xué)表現(xiàn)形式——多媒體,給學(xué)生展示籃球運動員姚明比賽時的一幅動態(tài)圖。學(xué)生看到這幅圖,表現(xiàn)得很是興奮,在這個基礎(chǔ)上,我給學(xué)生簡要地介紹了姚明的籃球生涯和他對中國籃球做出的杰出貢獻。尤其強調(diào)姚明作為國家隊的領(lǐng)軍人物,在雅典和北京兩屆奧運會中取得了前八的優(yōu)異成績,贊賞了姚明在比賽中表現(xiàn)出來的奮斗精神。接著對學(xué)生說:“對于投籃來說,運動員非常在乎的一條線是什么呢?”學(xué)生一致回答:“拋物線?!比缓蟀呀裉斓慕虒W(xué)內(nèi)容逐漸地展開來。從以上的案例我們可以發(fā)現(xiàn),這節(jié)課對于拋物線的教學(xué)引入,無疑是成功的。通過對姚明的籃球生涯的回顧,不僅激起了學(xué)生的學(xué)習(xí)興趣,更重要的是讓學(xué)生感受到奮發(fā)拼搏、為國爭光的精神。同時,這樣具有創(chuàng)造性的教學(xué)引入,體現(xiàn)了教師先進的教學(xué)理念,也正是這種先進的教學(xué)理念下實施的教學(xué)創(chuàng)新,才能夠讓學(xué)生感受到不一樣的教學(xué)氛圍,引領(lǐng)學(xué)生展開創(chuàng)新性的思維培養(yǎng)。

2.開展情境教學(xué),營造創(chuàng)新性思維學(xué)習(xí)氛圍

創(chuàng)新就是要別出心裁,就是要不受傳統(tǒng)的局限。在教學(xué)中,教師要打破傳統(tǒng)教學(xué)理念的束縛,針對教學(xué)的內(nèi)容進行創(chuàng)新性的情境創(chuàng)設(shè),營造創(chuàng)新性思維的學(xué)習(xí)氛圍,給予學(xué)生不一樣的學(xué)習(xí)感受,促進學(xué)生的創(chuàng)新性思維的覺醒。比如,在進行拋物線及其標(biāo)準(zhǔn)方程的教學(xué)中,通過姚明的事跡吸引學(xué)生的注意,引入到拋物線的學(xué)習(xí)中,在進行教學(xué)時我注意開展情境教學(xué),為學(xué)生營造創(chuàng)新性的教學(xué)氛圍。首先利用多媒體列舉了學(xué)生在生活中可能會感受到的拋物線,然后,引導(dǎo)學(xué)生回顧橢圓和雙曲線的知識,并讓學(xué)生結(jié)合拋物線的圖片回答以下問題:根據(jù)我們的經(jīng)驗,0﹤f﹤1的時候就構(gòu)成了橢圓,而當(dāng)f﹥1則會形成雙曲線,那么如果f=1會形成什么樣的圖形呢?這種承前啟后的情境的創(chuàng)設(shè),有效地降低了學(xué)生學(xué)習(xí)和思考的難度,把學(xué)生的注意力集中到了拋物線的學(xué)習(xí)和思考中。教師通過這樣有效的情境創(chuàng)設(shè),營造出來創(chuàng)新性思維的學(xué)習(xí)氛圍,為培養(yǎng)學(xué)生的創(chuàng)新性思維奠定了良好的基礎(chǔ)??梢?,在高中數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的創(chuàng)新性思維,關(guān)鍵是教師如何在教學(xué)中進行有效的教學(xué)設(shè)計和教學(xué)組織。上述案例通過教師的情境創(chuàng)設(shè),給學(xué)生營造出創(chuàng)新性的思維環(huán)境。在這樣的環(huán)境中,學(xué)生必須要進行創(chuàng)新性的思考,才能得出正確的答案。這就有效地激活了學(xué)生的創(chuàng)新性思維,為在教學(xué)中培養(yǎng)學(xué)生的創(chuàng)新性思維開了好頭。