光電子器件范文
時(shí)間:2023-03-29 18:46:28
導(dǎo)語:如何才能寫好一篇光電子器件,這就需要搜集整理更多的資料和文獻(xiàn),歡迎閱讀由公務(wù)員之家整理的十篇范文,供你借鑒。
篇1
關(guān)鍵詞:光子晶體;硅基光電子學(xué);集成光回路
中圖分類號:TN256 文獻(xiàn)標(biāo)識碼:A 文章編號:1671-2064(2017)08-0230-01
1 光子晶體
光子在傳播時(shí),遇到周期排布的介電常數(shù)材料,將會(huì)產(chǎn)生布拉格散射,因而會(huì)產(chǎn)生光子能帶與帶隙,使光子晶體具有光半導(dǎo)體的性質(zhì)[1-2]。目前來說,我們主要靠對于缺陷的引入來實(shí)現(xiàn)對光子的局域化控制。缺陷有兩種基本形式:線缺陷和點(diǎn)缺陷。當(dāng)引入線缺陷時(shí),對于處在光子晶體禁帶能量的光子,它不能逃逸進(jìn)入周圍的光子晶體當(dāng)中,因而只能沿著線缺陷的確定路徑傳播。光子晶體波導(dǎo)對于光的傳輸性能強(qiáng)過傳統(tǒng)的波導(dǎo)物質(zhì),例如光纖。光纖依靠全反射作用來實(shí)現(xiàn)光的傳輸,但在較大轉(zhuǎn)彎角處由于不再滿足全反射條件而會(huì)有光子逃逸。在微納尺度上使用光子晶體波導(dǎo)的傳輸效率更高。光子晶體憑借它的特點(diǎn),被廣泛研究。例如一些應(yīng)用于各個(gè)不同的光頻段,有的看重更低的損耗、小限制的傳播窗口,還有一些則具有特殊用途(減緩光速)。
自從光子晶體的概念被提出以來,它就和它的蘊(yùn)含的巨大應(yīng)用價(jià)值聯(lián)系在一起。[3]它那特有光子帶隙能夠抑制物質(zhì)的自發(fā)輻射,而這可以用于制作全反射鏡。另外,我們在其中引入缺陷,可以制成缺陷模,而缺陷??梢杂弥谱魑⑶弧⒉▽?dǎo)、光開關(guān)、甚至人們熟知的激光器和探測器等等??傊?,集成光電子學(xué)是光子晶體主要的活躍范圍,但是同時(shí)光子晶體在其他各個(gè)方面也有著重要的應(yīng)用價(jià)值,它可以提高現(xiàn)今不斷走進(jìn)我們?nèi)粘I畹陌l(fā)光二極管的工作效率。
2 硅基光電子學(xué)
由于硅基半導(dǎo)體集成電路在生產(chǎn)規(guī)模和成本方面具有明顯的優(yōu)勢, 所以現(xiàn)階段人們嘗試用硅作為制作納米級電子器件的主要材料,來縮減在Ⅲ-Ⅴ族元素中尋找材料制作具有相同目的的微納光電子器件的成本,現(xiàn)階段人們憑借已知的硅在1.3~1.5μm通信波段具有的低功耗的優(yōu)勢,并以此為基礎(chǔ),已經(jīng)成功生產(chǎn)出大量的硅基微納光電子器件,就比如說此類的耦合器、光波導(dǎo)器件等。雖然說現(xiàn)階段硅基微納光電子器件已經(jīng)具有相當(dāng)明顯的優(yōu)勢,但為了它在具體應(yīng)用的過程中保證夠達(dá)到預(yù)期的應(yīng)用效果,我們需要對其部分性能進(jìn)行有效的優(yōu)化。只要硅基微納光電子器件在性能方面能夠不斷地優(yōu)化、我們的技術(shù)能夠不斷完善,它的應(yīng)用空間就會(huì)得到擴(kuò)展。
在對硅光晶體的研究中,我們已經(jīng)看到:在硅基材料中引入光子晶體可以明顯的提高它的發(fā)光效率。憑借這我們可以預(yù)見:隨著新型硅基高效發(fā)光材料研究的不斷深入,新型制備技術(shù)如電注入泵浦方法的突破和光子晶體物理性質(zhì)研究的深入,以及對于高效硅基材料的發(fā)光特性使用光子晶體的局域光效應(yīng)加以控制,就很有可能提高硅基材料的l光增益,以此實(shí)現(xiàn)擁有低閾值的硅基激光器制備,進(jìn)而可以在微電子芯片中利用光子替代電子作為載體來實(shí)現(xiàn)光耦合互聯(lián),消除電子傳播發(fā)熱的劣勢,這樣就可以突破電子瓶頸效應(yīng)。[4]
3 集成光回路
和普通的信息處理相似,信息處理“全光子化”,就是指利用光來進(jìn)行信息傳遞。它的概念包涵了光信號的發(fā)出、它的調(diào)節(jié)、對光信號的接收、對于信號的處理、信號的返回的整個(gè)過程。作為光信號的來源的有源發(fā)光器以光子晶體為基礎(chǔ),光信號又受到光子晶體制成的光開關(guān)調(diào)節(jié)和制約。光子晶體波導(dǎo)還能實(shí)現(xiàn)對于信號的傳輸與分流的作用,根據(jù)第二節(jié)提到線缺陷波導(dǎo)的傳輸優(yōu)勢,能夠?qū)崿F(xiàn)高效率低損耗,每個(gè)分路又要經(jīng)波分復(fù)用器件下載,各個(gè)分路中的光信號在各自受到新的調(diào)制后,重新匯聚到干路, 回到接收裝置。因?yàn)槊恳徊糠值母鱾€(gè)部件在所用材料與大小上近乎一致,我們知道,傳統(tǒng)光學(xué)器件的大小在厘米尺寸,微小的加工誤差都會(huì)導(dǎo)致其工作頻率的較大改變,因而產(chǎn)生光模式不匹配的問題,都會(huì)有較大的功率損耗,微型化的光子器件能避免這一問題。同時(shí)相同材質(zhì)大小統(tǒng)一也方便光路一體化的實(shí)現(xiàn)。再加之與日益成熟的制備技術(shù)相適應(yīng),將會(huì)為全光路信息傳遞集成化鋪就道路。
4 問題分析與展望
二十多年過去了,經(jīng)過這些年的發(fā)展,光子晶體理論已經(jīng)不斷發(fā)展完善,我們也已經(jīng)在其原理、設(shè)計(jì)取得了不斷進(jìn)步。二維光子晶體的制備相對容易,已有諸如反應(yīng)離子刻蝕和深紫外曝光等成熟技術(shù)。相對來說,對于集成光路更重要的三維光子晶體制備技術(shù)目前還不成熟,已有一些方法但還不能大規(guī)模集成化應(yīng)用,因此是關(guān)鍵發(fā)展方向。但是現(xiàn)有制備技術(shù)還是不完美,仍然有許多難題、核心關(guān)鍵有待克服。例如,二維晶體中的誤差控制,由于我們使用的光子頻率都在納米量級,晶體中幾何上的微小誤差都會(huì)導(dǎo)致對調(diào)制頻率的影響,進(jìn)而影響發(fā)射接收以及模式匹配。而我們需要將制備技術(shù)的精度提升到亞納米量級,才可以制備出高Q值的微腔,我們需要這樣一個(gè)可行的、簡便的方法。隨著光子晶體各種特殊現(xiàn)象、性質(zhì)在被不斷發(fā)現(xiàn),一些新的研究方向隨之提出,或許一些新的性質(zhì)會(huì)隨著人們對于光子晶體的不斷發(fā)掘而被發(fā)現(xiàn)。
在硅基有源器件方面:我們?nèi)詫τ跐M足電泵浦、通信波段、產(chǎn)品化的硅基光源探尋不深,其中就包括擁有低閾值特性的III-V鍵合光源,十分穩(wěn)定的、使用低電壓驅(qū)動(dòng)的鍺激光器,還有以Er離子為基礎(chǔ)的電泵硅激光器;我們?nèi)孕柙谡{(diào)制器上努力以滿足需求。鍺探測器的暗電流制約其發(fā)展,為能夠大規(guī)模量產(chǎn),需新技術(shù)降低暗電流。
在硅基無源器件方面:問題之一就是硅基波導(dǎo)材料實(shí)現(xiàn)低損耗需要特殊工藝處理,因而無法實(shí)現(xiàn)大規(guī)模電路集成;其二為實(shí)現(xiàn)光柵的高耦合效率需要增加反射層,使得工藝更為復(fù)雜;這些器件的加工工藝急需簡化,使其能用標(biāo)準(zhǔn)的CMOS工藝制備。在硅基光電集成方面:怎樣將光纖和波導(dǎo)高效耦合是一個(gè)難題;因?yàn)楣杌怆娮悠骷亩鄻有?,所以需要化為統(tǒng)一標(biāo)準(zhǔn)。另外加工平臺成本較高。此外,硅的高熱光系數(shù)使得其光學(xué)性能受溫度影響,這一點(diǎn)是器件設(shè)計(jì)上的難題。封裝也不容忽視。因此,為了硅基光電子集成投入量產(chǎn),我們需要在材料、工藝、設(shè)計(jì)等方面進(jìn)行研究。
展望未來它將幫助我們實(shí)現(xiàn)高速、低能耗的探測器設(shè)計(jì);擁有低損耗的硅基激光器;十分高效的硅基光電子集成;高計(jì)算速率的光電接口;大能夠投入量產(chǎn)的大規(guī)模集成設(shè)備。
5 結(jié)語
在科學(xué)研究興盛的當(dāng)下,人們對于生產(chǎn)生活的需要往往能帶動(dòng)一種新的科學(xué)技術(shù)的出現(xiàn)與發(fā)展,沒有人們需求的推動(dòng)新的學(xué)說只是空想。新興生產(chǎn)技術(shù)的完善與發(fā)展也是需要科研工作者們堅(jiān)持不懈的探索與嘗試。光子晶體獨(dú)特的性質(zhì)備受關(guān)注,全世界的科研人員都對它抱有濃厚興趣,最初的概念現(xiàn)今已經(jīng)拿出了實(shí)體成果,我們可以看出對于它的研究人們走過的路程。在光子晶體的實(shí)用方面,我們以降低制作難度,減小制作成本,降低不確定性與不穩(wěn)定性為目標(biāo),這也是為實(shí)現(xiàn)光學(xué)集成所必須做出的雖然這里仍有許多難題等待突破,但是我們?nèi)栽跒橹畩^斗。
參考文獻(xiàn)
[1]彭英才,Seiichi Miyazaki,徐駿,陳坤基.面向21世紀(jì)的Si基光子學(xué)Chinese Journal of Nature.
[2]倪培根.光子晶體制備技術(shù)和應(yīng)用研究進(jìn)展.物理學(xué)報(bào),第59卷第1期2010(1).
篇2
關(guān)鍵詞:自由空間光通訊;激光器;光電探測器;光學(xué)濾波器
中圖分類號:TN929.11
自由空間的光通信技術(shù)是一種以激光為主要的信息載體的通信技術(shù),按不同的傳輸介質(zhì)可以分為大氣激光和星際激光通信。而且由于自由空間光擁有速率高和頻帶以及安裝方便,還有一定的高度保密性等的特點(diǎn),近年來已經(jīng)受到了人們的重視,得到了很好的發(fā)展。大氣激光通信因?yàn)槭艿酱髿獾男诺篮筒涣辑h(huán)境的影響,所以一般只能是作為短距離間的通信和應(yīng)急的通信手段,因?yàn)橛钪婵臻g是在真空的狀態(tài)下的,所以激光束在這個(gè)空間是受不到任何的干擾的,所以星際的激光通信就越來越受到人們的關(guān)注,許多的國家都開始在加大對星際激光通信的研究,也取得了許多好的成果。由于通信技術(shù)的不斷的發(fā)展,保密通信也開始運(yùn)用到現(xiàn)代化的戰(zhàn)爭中,以前的有線和無線技術(shù)的保密性都夠強(qiáng),容易泄露軍事機(jī)密,而自由空間的光通信是一種保密性嫉妒強(qiáng)的通訊技術(shù)。本文主要就是分析自由空間光通信技術(shù)中的主要的光電器件的現(xiàn)狀。
1 自由空間光通信系統(tǒng)中的激光器
自由空間光通信系統(tǒng)中的激光器的作用就是產(chǎn)生激光信號并且形成一道光束發(fā)射到空中,激光器是整自由空間光通信系統(tǒng)中關(guān)鍵性的器件,自由空間光通信系統(tǒng)中的激光器的好壞會(huì)直接的影響到通信的可以達(dá)到的最遠(yuǎn)距離,還會(huì)對通信的質(zhì)量造成很大的影響,對于整個(gè)通信系統(tǒng)的整體的性能也有較大的影響,所以選擇好的激光器是十分的重要的。一般對于激光器的要求首先就是要有良好的輸出功率,而發(fā)射出的波長要與傳輸?shù)慕橘|(zhì)的低耗能區(qū)相配,其次發(fā)射的頻率必須性對穩(wěn)定,調(diào)節(jié)與設(shè)置比較的方便,有比較大的調(diào)制速率,最后就是體積一定要輕,重量要比較輕,耗電量要最少,使用壽命要長,運(yùn)行的效率要高,還要方便集成和保養(yǎng)維護(hù)。當(dāng)下在光通信中的最常見的激光器是CO2激光器和半導(dǎo)體的激光器等。
1.1 CO2激光器
CO2激光器是一種輝光放電混合體性質(zhì)的激光器,它的激光輻射不僅僅是可以很好的透過大氣傳進(jìn)行遠(yuǎn)距離的輸送,它光束的相干性也十分的好。CO2激光器發(fā)射光的頻率十分的穩(wěn)定,還可以實(shí)現(xiàn)單模式的運(yùn)行,它可以進(jìn)行連續(xù)不斷的輻射,還可以進(jìn)行脈沖式的輻射。CO2激光器因?yàn)閷δ芰坑辛己玫霓D(zhuǎn)換效率,而且發(fā)射出的光束的質(zhì)量好,運(yùn)行的功率大,又可以連續(xù)的輸出以及脈沖式的輸出,運(yùn)行所需的費(fèi)用也比較的低,所以成為用途最廣泛的一種激光器。伴隨著對CO2激光器的不斷研發(fā),新的技術(shù)也開始運(yùn)用到其中,將會(huì)研發(fā)出體積更小和功率更強(qiáng)以及光束質(zhì)量更好的不同類型的CO2激光器。
1.2 半導(dǎo)體激光器
已有的半導(dǎo)體的激光工作物質(zhì)有幾十種,而且對其的研究也已經(jīng)十分的成熟,比如砷化鎵和摻鋁砷化鎵等。和其他的不同種類的激光器相比,這種半導(dǎo)體式的激光器是經(jīng)由電子―光子的轉(zhuǎn)換器,所以它的轉(zhuǎn)換效率是極高的,而且半導(dǎo)體式的激光器可以覆蓋的波段的范圍也是十分的廣泛的[1]。利用不同的半導(dǎo)體有源材料和多遠(yuǎn)化合物半導(dǎo)體不同的組分,可以得到更廣的激光輻射波長,所以可以滿足不同的需求。隨著半導(dǎo)體激光器輻射的波長的不斷的增大,半導(dǎo)體的使用的壽命也會(huì)增長許多,最長的使用壽命可以達(dá)到106個(gè)小時(shí),因?yàn)榘雽?dǎo)體激光的體積和重量都很小,所以整個(gè)的半導(dǎo)體的激光器的制作工藝是可以和半導(dǎo)體的電子器件與集成電路的生產(chǎn)工藝進(jìn)行結(jié)合的,這就給其他的器件實(shí)現(xiàn)單片光電子集成提供了很大的便利性。最近這幾年隨著對超晶格技術(shù)和器件結(jié)構(gòu)研究的不斷成熟,半導(dǎo)體激光器可以連續(xù)輸出的功率增加到了120瓦,目前半導(dǎo)體激光器因?yàn)轶w積和重量小,還有對電光裝換的效率極其的高,使用的壽命也長并且比較容易調(diào)節(jié)控制等一系列的優(yōu)點(diǎn)已經(jīng)成為了激光大氣通信的首先激光器。半導(dǎo)體式的激光器有一個(gè)明顯的缺點(diǎn)就是容易受到環(huán)境溫度的影響。
2 自由空間光通信系統(tǒng)中的光電探測器
光電探測器是激光通信系統(tǒng)中的核心的部件,它是利用干光信號進(jìn)行接收與轉(zhuǎn)換的,一般對光通信系統(tǒng)候中光電探測器的要求就是能夠?qū)λ械墓獠ㄓ懈叨鹊拿舾卸?,要與光源進(jìn)行發(fā)射的譜線相匹配,而且要有足夠的頻帶寬度可以滿足接收的光信號的帶寬,在對信號接收的整個(gè)的過程中,接受的信號中所夾雜的噪聲要小,而且對于外界的環(huán)境的敏感度不可以太高,也就是在外界的環(huán)境有所改變時(shí)還是要保持一定的穩(wěn)定性。
Si光電二極管是光伏探測器的一種,光伏探測器在對比較微弱的快速的光信號探測方面有很好的效果,而且伴隨著光電技術(shù)的不斷的發(fā)展,光信號在探測的靈敏度與頻率等方面都有很好的提高,Si光電二極管擁有效率高和噪聲小以及反映快等優(yōu)點(diǎn),而且它的耗電量少并且體積小壽命長,結(jié)構(gòu)也十分的簡單,使用起來也很方便。雖然它的光―電轉(zhuǎn)換的速度緩慢以及探測是進(jìn)行調(diào)制的頻率也比較的低,但是還是利大于弊的。
3 自由空間光通信中的光學(xué)濾波器
自由空間中光通信中的光學(xué)濾波器可以對光源發(fā)出的光場進(jìn)行接收時(shí),可以最大限度的減少噪聲。在光電通信系統(tǒng)中,對光學(xué)濾波器的要求有,首先是要有良好的波長,還要與激光器相適應(yīng)。由于激光器的波長會(huì)隨著溫度的變化而改變,在對溫度沒有進(jìn)行控制的情況下,如果外界的環(huán)境發(fā)生較大的改變,那么就會(huì)影響到激光器的波長產(chǎn)生改變,最終會(huì)影響對信號的有效接收。
干涉濾波器主要是運(yùn)用反射的波之間的相互延長與抵消來提供選擇性的濾波,這種光學(xué)濾波器可以設(shè)計(jì)成在某些波長的內(nèi)部反射中,而且在波長上還可以進(jìn)行相互的抵消,這種干涉濾波器可以被設(shè)計(jì)成很多的不同種類的多層的介質(zhì)濾波器,經(jīng)過適當(dāng)?shù)膶φ凵渎实陌才牛梢詮囊r底上反射的場所需要的波長進(jìn)行一定程度的波長加強(qiáng)。一般的帶有尖銳的干涉濾波器只是會(huì)沿著準(zhǔn)直軸進(jìn)入到濾波器的聚光的設(shè)計(jì)中,一般適度的相移都是經(jīng)過材料的不同的厚度來維持的[2]。
在空間的激光通信的過程中,有許多的隨機(jī)和持續(xù)性的干擾,一些太陽的輻射在進(jìn)行通訊的過程中就會(huì)利用星際和其他的散射體的散射在進(jìn)入接受天線的過程中,就會(huì)造成很強(qiáng)的噪音。在整個(gè)的通信過程中,因?yàn)楣馔ㄐ判诺酪呀?jīng)建立了,所以使得通信激光的額發(fā)散角變小。在這種情況下,只有通過空間的濾波,才可以使得少量的背景光可以進(jìn)入到接收機(jī)內(nèi),而且進(jìn)入到接收機(jī)內(nèi)的通信激光是比較的強(qiáng)的。所以在通信機(jī)中運(yùn)用納米寬帶的干涉濾光器能夠很好的消除背景光的干擾。
4 結(jié)束語
通過對自由空間光通信中光電子器件的現(xiàn)狀的分析,可以看出目前在光通信中經(jīng)常使用的激光器是CO2激光器,它是達(dá)到遠(yuǎn)距離的通信效果的首先設(shè)備。半導(dǎo)體的激光器因?yàn)槠湓诜较蛐院拖喔尚缘确矫姹容^的弱,所以是近距離之間的通信光源的首先。光電探測器是整個(gè)激光通信系統(tǒng)的核心部件,Si光電二極管因?yàn)楣怆娹D(zhuǎn)換速度較慢和探測調(diào)制頻率較低等缺陷,所以比較的適應(yīng)與小容量的光通信系統(tǒng)中。干涉濾光器是空間通信中十分常見的一種濾波器,它可以有效的減少背景光的干擾,可以很高的對準(zhǔn)系統(tǒng),可以接受的信號的噪比十分的高。自由空間光通信技術(shù)在將來會(huì)成為一種十分有效的通信手段。
參考文獻(xiàn):
[1]黃德修,劉雪峰.半導(dǎo)體激光器及其應(yīng)用[M].北京:國防工業(yè)出版社,2009.
[2]楊祥林.光纖通信系統(tǒng)[M].北京:國防工業(yè)出版社,2010.
篇3
論文摘要:光電子器件和部件廣泛應(yīng)用于長距離大容量光纖通信、光存儲、光顯示、光互聯(lián)、光信息處理、激光加工、激光醫(yī)療和軍事武器裝備,預(yù)期還會(huì)在未來的光計(jì)算中發(fā)揮重要作用。本文將介紹國內(nèi)外光電子技術(shù)及光電子產(chǎn)業(yè)的發(fā)展。
如果說微電子技術(shù)推動(dòng)了以計(jì)算機(jī)、因特網(wǎng)、光纖通信等為代表的信息技術(shù)的高速發(fā)展,改變了人們的生活方式,使得知識經(jīng)濟(jì)初見端倪,那么隨著信息技術(shù)的發(fā)展,大容量光纖通信網(wǎng)絡(luò)的建設(shè),光電子技術(shù)將起到越來越重要的作用。美國商務(wù)部指出:“90年代,全世界的光子產(chǎn)業(yè)以比微電子產(chǎn)業(yè)高得多的速度發(fā)展,誰在光電子產(chǎn)業(yè)方面取得主動(dòng)權(quán),誰就將在21世紀(jì)的尖端科技較量中奪魁”。日本《呼聲》月刊也有類似的評論:“21世紀(jì)具有代表意義的主導(dǎo)產(chǎn)業(yè),第一是光電子產(chǎn)業(yè),第二是信息通信產(chǎn)業(yè),第三是健康和福利產(chǎn)業(yè)……”,可以斷言,光電子技術(shù)將繼微電子技術(shù)之后再次推動(dòng)人類科學(xué)技術(shù)的革命。
1世界光電子技術(shù)和產(chǎn)業(yè)的發(fā)展
光纖通信技術(shù)的發(fā)展速度遠(yuǎn)遠(yuǎn)超過當(dāng)初人們的預(yù)料,光纖已經(jīng)成為通信網(wǎng)的重要傳輸媒介,現(xiàn)在世界上大約有60%的通信業(yè)務(wù)經(jīng)光纖傳輸,到20世紀(jì)末將達(dá)到85%,但從目前光纖通信的整體水平來看,仍處于初級階段,光纖通信的巨大潛力還沒有完全開發(fā)出來。目前,各種新技術(shù)層出不窮,密集波分復(fù)用技術(shù)(DWDM,在同一根光纖內(nèi)傳輸多路不同波長的光信號,以提高單根光纖的傳輸能力)、摻鉺光纖放大器技術(shù)(EDFA,可將光信號直接放大,具有輸出功率高、噪聲小,增益帶寬等優(yōu)點(diǎn))已取得突破性進(jìn)展并得到廣泛的應(yīng)用?,F(xiàn)在DWDM系統(tǒng)和光傳輸設(shè)備中,光電技術(shù)的比例將從過去比重不到10%達(dá)到90%。一種全新的、無需進(jìn)行任何光電變換的光波通信——“全光通信”,由于波分復(fù)用技術(shù)和摻鉺光纖放大器技術(shù)的進(jìn)展,也日趨成熟,將在橫跨太平洋和大西洋的通信系統(tǒng)上首次使用,給全球的通信業(yè)帶來蓬勃生機(jī)。為此提供支撐的就是半導(dǎo)體光電子器件和部件。光電子器件和技術(shù)已形成一個(gè)快速增長的、巨大的光電子產(chǎn)業(yè),對國民經(jīng)濟(jì)的發(fā)展起著越來越大的作用。美國光電子產(chǎn)業(yè)振興協(xié)會(huì)估計(jì),到2003年,光電子產(chǎn)業(yè)的總產(chǎn)值將達(dá)2000億美元。
Internet應(yīng)用的飛速增長對電信骨干網(wǎng)帶寬提出越來越高的需求,為滿足需求的增長,人們可以鋪設(shè)更多的光纖,或靠提高單路光的信息運(yùn)載量(現(xiàn)在主干網(wǎng)可以分別工作在2.5Gbps和10Gbps,并已有40Gbps的演示性設(shè)備)。但更主要的方法卻是靠發(fā)展波分復(fù)用技術(shù),增加光纖內(nèi)通光的路數(shù)(光波分復(fù)用的實(shí)驗(yàn)記錄已經(jīng)達(dá)到2.64Tbps)。波分復(fù)用技術(shù)的普遍運(yùn)用為光電子器件和部件提供了廣闊的、快速增長的市場。無限戰(zhàn)略公司的報(bào)告指出:“信號傳輸用1.31μm和1.55μm激光器市場1999年達(dá)到13億美元,比去年增加23%;1.48μm信號放大用激光器1999年市場份額達(dá)到1.6億美元,比去年增加33%;980nm信號放大用激光器銷售額達(dá)2.9億美元,比去年增長121%。整個(gè)激光器市場的份額1999年達(dá)18億美元,預(yù)期2003年將達(dá)到30億美元”。美國通信工業(yè)研究公司(CIR)的研究預(yù)測,北美市場光電子部件的市場規(guī)模將由目前的28億美元增長到2003年的61億美元,約每年增長18.5%。密集波分復(fù)用設(shè)備銷售額也將從1998年的22億美元增加到2004年的94億美元。報(bào)告稱雖然10年內(nèi)全光通信還不會(huì)全面商業(yè)化,但是全光交換將在幾年內(nèi)成為市場主流,報(bào)告也指出盡管光學(xué)部件市場被大公司所占據(jù),但仍有創(chuàng)新性公司進(jìn)入的可能。
2我國的光電子技術(shù)和產(chǎn)業(yè)
近10年來我國光電子技術(shù)研究在國家“863”計(jì)劃和有關(guān)部門的支持下有了突飛猛進(jìn)的進(jìn)展,在很多領(lǐng)域同國外先進(jìn)國家只有兩三年的距離,個(gè)別領(lǐng)域還處于世界領(lǐng)先地位。
國內(nèi)光電子有關(guān)產(chǎn)業(yè)基地在光電子器件、部件和子系統(tǒng)(如激光器、探測器、光收發(fā)模塊、EDFA、無源光器件)等已經(jīng)占領(lǐng)了國內(nèi)較大的市場份額,初步具備同國外大公司競爭的能力,在毫無市場保護(hù)的情況下,靠自己的力量爭得了一席之地,市場營銷逐年有較大的增長,個(gè)別產(chǎn)品還取得國際市場相關(guān)產(chǎn)品中的銷量最大的成績。我國相應(yīng)研究發(fā)展基地和本領(lǐng)域高技術(shù)公司的許多產(chǎn)品填補(bǔ)了國內(nèi)相關(guān)產(chǎn)品的空白,打破國外產(chǎn)品在市場上的壟斷地位,同時(shí)爭取進(jìn)入國際市場。
摻鉺光纖放大器(EDFA)是高速大容量光纖通信系統(tǒng)必需的關(guān)鍵部件,國內(nèi)企業(yè)產(chǎn)品占國內(nèi)市場40%的份額。我國也是目前國際上少數(shù)幾個(gè)有能力研制PIC和OEIC的國家。808nm大功率激光器及其泵浦的固體綠光激光器,670nm紅光激光器已產(chǎn)品化和商品化并批量占領(lǐng)國際市場。國內(nèi)移動(dòng)通信的光纖直放站所用的光電器件,90%使用國產(chǎn)器件,國產(chǎn)1.55μmDFB激光器戰(zhàn)勝了國外器件,占領(lǐng)了100%的國內(nèi)市場。
但是,我們應(yīng)當(dāng)認(rèn)識到在我國光電子技術(shù)發(fā)展中,光電子器件、部件雖是光通信、光顯示、光存儲等高技術(shù)產(chǎn)業(yè)的關(guān)鍵部分,但在整個(gè)系統(tǒng)和設(shè)備成本中所占的比重較小,其產(chǎn)值較低,目前科研開發(fā)主要處于跟蹤和小批量生產(chǎn)階段,光電子產(chǎn)業(yè)所需的規(guī)?;a(chǎn)業(yè)化生產(chǎn)技術(shù)目前還未有實(shí)質(zhì)突破;國內(nèi)研究生產(chǎn)的光電器件和部件有相當(dāng)部分還未能滿足整機(jī)和系統(tǒng)的要求,導(dǎo)致國外器件占據(jù)國內(nèi)市場相當(dāng)多的份額;在機(jī)制上仍未擺脫科研、生產(chǎn)、市場相互脫離的狀況。
篇4
筆者認(rèn)為,光纖通信技術(shù)尚有很大的發(fā)展空間,今后會(huì)有很大的需求和市場。主要是:光纖到家庭FTTH、光交換和集成光電子器件方面會(huì)有較大的發(fā)展。在此主要討論光纖通信的發(fā)展趨勢和市場。
光纖通信的發(fā)展趨勢
1、光纖到家庭(FTTH)的發(fā)展
FTTH可向用戶提供極豐富的帶寬,所以一直被認(rèn)為是理想的接入方式,對于實(shí)現(xiàn)信息社會(huì)有重要作用,還需要大規(guī)模推廣和建設(shè)。FTTH所需要的光纖可能是現(xiàn)有已敷光纖的2~3倍。過去由于FTTH成本高,缺少寬帶視頻業(yè)務(wù)和寬帶內(nèi)容等原因,使FTTH還未能提到日程上來,只有少量的試驗(yàn)。近來,由于光電子器件的進(jìn)步,光收發(fā)模塊和光纖的價(jià)格大大降低;加上寬帶內(nèi)容有所緩解,都加速了FTTH的實(shí)用化進(jìn)程。
發(fā)達(dá)國家對FTTH的看法不完全相同:美國AT&T認(rèn)為FTTH市場較小,在0F62003宣稱:FTTH在20-50年后才有市場。美國運(yùn)行商Verizon和Sprint比較積極,要在10—12年內(nèi)采用FTTH改造網(wǎng)絡(luò)。日本NTT發(fā)展FTTH最早,現(xiàn)在已經(jīng)有近200萬用戶。目前中國FTTH處于試點(diǎn)階段。
FTTH[遇到的挑戰(zhàn):現(xiàn)在廣泛采用的ADSL技術(shù)提供寬帶業(yè)務(wù)尚有一定優(yōu)勢。與FTTH相比:①價(jià)格便宜②利用原有銅線網(wǎng)使工程建設(shè)簡單③對于目前1Mbps—500kbps影視節(jié)目的傳輸可滿足需求。FTTH目前大量推廣受制約。
對于不久的將來要發(fā)展的寬帶業(yè)務(wù),如:網(wǎng)上教育,網(wǎng)上辦公,會(huì)議電視,網(wǎng)上游戲,遠(yuǎn)程診療等雙向業(yè)務(wù)和HDTV高清數(shù)字電視,上下行傳輸不對稱的業(yè)務(wù),AD8L就難以滿足。尤其是HDTV,經(jīng)過壓縮,目前其傳輸速率尚需19.2Mbps。正在用H.264技術(shù)開發(fā),可壓縮到5~6Mbps。通常認(rèn)為對QOS有所保證的ADSL的最高傳輸速串是2Mbps,仍難以傳輸HDTV。可以認(rèn)為HDTV是FTTH的主要推動(dòng)力。即HDTV業(yè)務(wù)到來時(shí),非FTTH不可。
FTTH的解決方案:通常有P2P點(diǎn)對點(diǎn)和PON無源光網(wǎng)絡(luò)兩大類。
F2P方案一一優(yōu)點(diǎn):各用戶獨(dú)立傳輸,互不影響,體制變動(dòng)靈活;可以采用廉價(jià)的低速光電子模塊;傳輸距離長。缺點(diǎn):為了減少用戶直接到局的光纖和管道,需要在用戶區(qū)安置1個(gè)匯總用戶的有源節(jié)點(diǎn)。
PON方案——優(yōu)點(diǎn):無源網(wǎng)絡(luò)維護(hù)簡單;原則上可以節(jié)省光電子器件和光纖。缺點(diǎn):需要采用昂貴的高速光電子模塊;需要采用區(qū)分用戶距離不同的電子模塊,以避免各用戶上行信號互相沖突;傳輸距離受PON分比而縮短;各用戶的下行帶寬互相占用,如果用戶帶寬得不到保證時(shí),不單是要網(wǎng)絡(luò)擴(kuò)容,還需要更換PON和更換用戶模塊來解決。(按照目前市場價(jià)格,PEP比PON經(jīng)濟(jì))。
PON有多種,一般有如下幾種:(1)APON:即ATM-PON,適合ATM交換網(wǎng)絡(luò)。(2)BPON:即寬帶的PON。(3)OPON:采用通用幀處理的OFP-PON。(4)EPON:采用以太網(wǎng)技術(shù)的PON,0EPON是千兆畢以太網(wǎng)的PON。(5)WDM-PON:采用波分復(fù)用來區(qū)分用戶的PON,由于用戶與波長有關(guān),使維護(hù)不便,在FTTH中很少采用。
發(fā)達(dá)國家發(fā)展FTTH的計(jì)劃和技術(shù)方案,根據(jù)各國具體情況有所不同。美國主要采用A-PON,因?yàn)锳TM交換在美國應(yīng)用廣泛。日本NTT有一個(gè)B-FLETts計(jì)劃,采用P2P-MC、B-PON、G-EPON、SCM-PON等多種技術(shù)。SCM-PON:是采用副載波調(diào)制作為多信道復(fù)用的PON。
中國ATM使用遠(yuǎn)比STM的SDH少,一般不考慮APON。我們可以考慮的是P2P、GPON和EPON。P2P方案的優(yōu)缺點(diǎn)前面已經(jīng)說過,目前比較經(jīng)濟(jì),使用靈活,傳輸距離遠(yuǎn)等;宜采用。而比較GPON和EPON,各有利弊。GPON:采用GFP技術(shù)網(wǎng)絡(luò)效率高;可以有電話,適合SDH網(wǎng)絡(luò),與IP結(jié)合沒有EPON好,但目前GPON技術(shù)不很成熟。EPON:與IP結(jié)合好,可用戶電話,如用電話需要借助lAD技術(shù)。目前,中國的FTTH試點(diǎn)采用EPON比較多。FTTH技術(shù)方案的采用,還需要根據(jù)用戶的具體情況不同而不同。
近來,無線接入技術(shù)發(fā)展迅速??捎米鱓LAN的IEEE802.11g協(xié)議,傳輸帶寬可達(dá)54Mbps,覆蓋范圍達(dá)100米以上,目前已可商用。如果采用無線接入WLAN作用戶的數(shù)據(jù)傳輸,包括:上下行數(shù)據(jù)和點(diǎn)播電視VOD的上行數(shù)據(jù),對于一般用戶其上行不大,IEEES02.11g是可以滿足的。而采用光纖的FTTH主要是解決HDTV寬帶視頻的下行傳輸,當(dāng)然在需要時(shí)也可包含一些下行數(shù)據(jù)。這就形成“光纖到家庭+無線接入”(FTTH+無線接入)的家庭網(wǎng)絡(luò)。這種家庭網(wǎng)絡(luò),如果采用PON,就特別簡單,因?yàn)榇薖ON無上行信號,就不需要測距的電子模塊,成本大大降低,維護(hù)簡單。如果,所屬PON的用戶群體,被無線城域網(wǎng)WiMAX(1EEE802.16)覆蓋而可利用,那么可不必建設(shè)專用的WLAN。接入網(wǎng)采用無線是趨勢,但無線接入網(wǎng)仍需要密布于用戶臨近的光纖網(wǎng)來支撐,與FTTH相差無幾。FTTH+無線接入是未來的發(fā)展趨勢。
2、光交換的發(fā)展什么是通信?
實(shí)際上可表示為:通信輸+交換。
光纖只是解決傳輸問題,還需要解決光的交換問題。過去,通信網(wǎng)都是由金屬線纜構(gòu)成的,傳輸?shù)氖请娮有盘?交換是采用電子交換機(jī)?,F(xiàn)在,通信網(wǎng)除了用戶末端一小段外,都是光纖,傳輸?shù)氖枪庑盘?。合理的方法?yīng)該采用光交換。但目前,由于目前光開關(guān)器件不成熟,只能采用的是“光-電-光”方式來解決光網(wǎng)的交換,即把光信號變成電信號,用電子交換后,再變還光信號。顯然是不合理的辦法,是效串不高和不經(jīng)濟(jì)的。正在開發(fā)大容量的光開關(guān),以實(shí)現(xiàn)光交換網(wǎng)絡(luò),特別是所謂ASON-自動(dòng)交換光網(wǎng)絡(luò)。
通常在光網(wǎng)里傳輸?shù)男畔?一般速度都是xGbps的,電子開關(guān)不能勝任。一般要在低次群中實(shí)現(xiàn)電子交換。而光交換可實(shí)現(xiàn)高速XGbDs的交換。當(dāng)然,也不是說,一切都要用光交換,特別是低速,顆粒小的信號的交換,應(yīng)采用成熟的電子交換,沒有必要采用不成熟的
大容量的光交換。當(dāng)前,在數(shù)據(jù)網(wǎng)中,信號以“包”的形式出現(xiàn),采用所謂“包交換”。包的顆粒比較小,可采用電子交換。然而,在大量同方向的包匯總后,數(shù)量很大時(shí),就應(yīng)該采用容量大的光交換。
目前,少通道大容量的光交換已有實(shí)用。如用于保護(hù)、下路和小量通路調(diào)度等。一般采用機(jī)械光開關(guān)、熱光開關(guān)來實(shí)現(xiàn)。目前,由于這些光開關(guān)的體積、功耗和集成度的限制,通路數(shù)一般在8—16個(gè)。
電子交換一般有“空分”和“時(shí)分”方式。在光交換中有“空分”、“時(shí)分”和“波長交換”。光纖通信很少采用光時(shí)分交換。
光空分交換:一般采用光開關(guān)可以把光信號從某一光纖轉(zhuǎn)到另一光纖。空分的光開關(guān)有機(jī)械的、半導(dǎo)體的和熱光開關(guān)等。近來,采用集成技術(shù),開發(fā)出MEM微電機(jī)光開關(guān),其體積小到mm。已開發(fā)出1296x1296MEM光交換機(jī)(Lucent),屬于試驗(yàn)性質(zhì)的。
光波長交換:是對各交換對象賦于1個(gè)特定的波長。于是,發(fā)送某1特定波長就可對某特定對象通信。實(shí)現(xiàn)光波長交換的關(guān)鍵是需要開發(fā)實(shí)用化的可變波長的光源,光濾波器和集成的低功耗的可靠的光開關(guān)陣列等。已開發(fā)出640x640半導(dǎo)體光開關(guān)+AWG的空分與波長的相結(jié)合的交叉連接試驗(yàn)系統(tǒng)(corning)。采用光空分和光波分可構(gòu)成非常靈活的光交換網(wǎng)。日本NTT在Chitose市進(jìn)行了采用波長路由交換的現(xiàn)場試驗(yàn),半徑5公里,共有43個(gè)終端節(jié),(試用5個(gè)節(jié)點(diǎn)),速率為2.5Gbps。
自動(dòng)交換的光網(wǎng),稱為ASON,是進(jìn)一步發(fā)展的方向。
3、集成光電子器件的發(fā)展
如同電子器件那樣,光電子器件也要走向集成化。雖然不是所有的光電子器件都要集成,但會(huì)有相當(dāng)?shù)囊徊糠质切枰沂强梢约傻?。目前正在發(fā)展的PLC-平面光波導(dǎo)線路,如同一塊印刷電路板,可以把光電子器件組裝于其上,也可以直接集成為一個(gè)光電子器件。要實(shí)現(xiàn)FTTH也好,ASON也好,都需要有新的、體積小的和廉價(jià)的和集成的光電子器件。
日本NTT采用PLO技術(shù)研制出16x16熱光開關(guān);1x128熱光開關(guān)陣列;用集成和混合集成工藝把32通路的AWG+可變光衰減器+光功率監(jiān)測集成在一起;8波長每波速串為80Gbps的WDM的復(fù)用和去復(fù)用分別集成在1塊芯片上,尺寸僅15x7mm,如圖1。NTT采用以上集成器件構(gòu)成32通路的OADM。其中有些已經(jīng)商用。近幾年,集成光電子器件有比較大的改進(jìn)。
中國的集成光電子器件也有一定進(jìn)展。集成的小通道光開關(guān)和屬于PLO技術(shù)的AWG有所突破。但與發(fā)達(dá)國家尚有較大差距。如果我們不迎頭趕上,就會(huì)重復(fù)如同微電子落后的被動(dòng)局面。
光纖通信的市場
眾所周知,2000年IT行業(yè)泡沫,使光纖通信產(chǎn)業(yè)生產(chǎn)規(guī)模爆炸性地發(fā)展,產(chǎn)品生產(chǎn)過剩。無論是光傳輸設(shè)備,光電子器件和光纖的價(jià)格都狂跌。特別是光纖,每公里泡沫時(shí)期價(jià)格為羊1200,現(xiàn)在價(jià)格Y100左右1公里,比銅線還便宜。光纖通信的市場何時(shí)能恢復(fù)?
根據(jù)RHK的對北美通信產(chǎn)業(yè)投入的統(tǒng)計(jì)和預(yù)測,如圖2.在2002年是最低谷,相當(dāng)于倒退4年。現(xiàn)在有所回升,但還不能恢復(fù)。按此推測,在2007-2008年才能復(fù)元。光纖通信的市場也隨IT市場好轉(zhuǎn)。這些好轉(zhuǎn),在相當(dāng)大的程度是由FTTH和寬帶數(shù)字電視所帶動(dòng)的。
篇5
關(guān)鍵詞半導(dǎo)體;材料;芯片;發(fā)展;應(yīng)用;技術(shù);
中圖分類號:O471 文獻(xiàn)標(biāo)識碼:A 文章編號:
引言
自然界中的物質(zhì),根據(jù)其導(dǎo)電性能的差異可劃分為導(dǎo)電性能良好的導(dǎo)體(如銀、銅、鐵等)、幾乎不能導(dǎo)電的絕緣體(如橡膠、陶瓷、塑料等)和半導(dǎo)體(如鍺、硅、砷化鎵等)。半導(dǎo)體是導(dǎo)電能力介于導(dǎo)體和絕緣體之間的一種物質(zhì)。它的導(dǎo)電能力會(huì)隨溫度、光照及摻入雜質(zhì)的不同而顯著變化,特別是摻雜可以改變半導(dǎo)體的導(dǎo)電能力和導(dǎo)電類型,這是其廣泛應(yīng)用于制造各種電子元器件和集成電路的基本依據(jù)。
一、半導(dǎo)體材料的概念與特性
當(dāng)今,以半導(dǎo)體材料為芯片的各種產(chǎn)品普遍進(jìn)入人們的生活,如電視機(jī),電子計(jì)算機(jī),電子表,半導(dǎo)體收音機(jī)等都已經(jīng)成為我們?nèi)粘K豢扇鄙俚募矣秒娖鳌?半導(dǎo)體材料為什么在今天擁有如此巨大的作用, 這需要我們從了解半導(dǎo)體材料的概念和特性開始。
半導(dǎo)體是導(dǎo)電能力介于導(dǎo)體和絕緣體之間的一類物質(zhì),在某些情形下具有導(dǎo)體的性質(zhì)。 半導(dǎo)體材料廣泛的應(yīng)用源于它們獨(dú)特的性質(zhì)。 首先,一般的半導(dǎo)體材料的電導(dǎo)率隨溫度的升高迅速增大,各種熱敏電阻的開發(fā)就是利用了這個(gè)特性;其次,雜質(zhì)參入對半導(dǎo)體的性質(zhì)起著決定性的作用,它們可使半導(dǎo)體的特性多樣化,使得 PN 結(jié)形成,進(jìn)而制作出各種二極管和三極管;再次,半導(dǎo)體的電學(xué)性質(zhì)會(huì)因光照引起變化,光敏電阻隨之誕生;一些半導(dǎo)體具有較強(qiáng)的溫差效應(yīng),可以利用它制作半導(dǎo)體制冷器等; 半導(dǎo)體基片可以實(shí)現(xiàn)元器件集中制作在一個(gè)芯片上,于是產(chǎn)生了各種規(guī)模的集成電路。 這種種特性使得半導(dǎo)體獲得各種各樣的用途, 在科技的發(fā)展和人們的生活中都起到十分重要的作用。
二、幾種主要半導(dǎo)體材料的發(fā)展現(xiàn)狀與趨勢
(一)硅材料
硅材料是半導(dǎo)體中應(yīng)用廣泛的一類材料,目前直徑為8英寸(200mm)的Si單晶已實(shí)現(xiàn)大規(guī)模工業(yè)生產(chǎn),基于直徑為12英寸(300mm)硅片的集成電路(IC's)技術(shù)正處在由實(shí)驗(yàn)室向工業(yè)生產(chǎn)轉(zhuǎn)變中。18英寸重達(dá)414公斤的硅單晶和18英寸的硅園片已在實(shí)驗(yàn)室研制成功,直徑27英寸硅單晶研制也正在積極籌劃中。
從進(jìn)一步提高硅IC'S的速度和集成度看,研制適合于硅深亞微米乃至納米工藝所需的大直徑硅外延片會(huì)成為硅材料發(fā)展的主流。另外,SOI材料,包括智能剝離(Smart cut)和SIMOX材料等也發(fā)展很快。目前,直徑8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在開發(fā)中。
(二)GaAs和InP單晶材料
GaAs和InP與硅不同,它們都是直接帶隙材料,具有電子飽和漂移速度高,耐高溫,抗輻照等特點(diǎn);在超高速、超高頻、低功耗、低噪音器件和電路,特別在光電子器件和光電集成方面占有獨(dú)特的優(yōu)勢。
(三)半導(dǎo)體超晶格、量子阱材料
半導(dǎo)體超薄層微結(jié)構(gòu)材料是基于先進(jìn)生長技術(shù)(MBE,MOCVD)的新一代人工構(gòu)造材料。它以全新的概念改變著光電子和微電子器件的設(shè)計(jì)思想,出現(xiàn)了“電學(xué)和光學(xué)特性可剪裁”為特征的新范疇,是新一代固態(tài)量子器件的基礎(chǔ)材料。GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED發(fā)光器件和有關(guān)納米硅的Ⅲ-V族超晶格、量子阱材料。我國早在1999年,就研制成功980nm InGaAs帶間量子級聯(lián)激光器,輸出功率達(dá)5W以上;2000年初,法國湯姆遜公司又報(bào)道了單個(gè)激光器準(zhǔn)連續(xù)輸出功率超過10瓦好結(jié)果。最近,我國的科研工作者又提出并開展了多有源區(qū)縱向光耦合垂直腔面發(fā)射激光器研究,這是一種具有高增益、極低閾值、高功率和高光束質(zhì)量的新型激光器,在未來光通信、光互聯(lián)與光電信息處理方面有著良好的應(yīng)用前景。
(四)一維量子線、零維量子點(diǎn)半導(dǎo)體微結(jié)構(gòu)材料
基于量子尺寸效應(yīng)、量子干涉效應(yīng),量子隧穿效應(yīng)和庫侖阻效應(yīng)以及非線性光學(xué)效應(yīng)等的低維半導(dǎo)體材料是一種人工構(gòu)造(通過能帶工程實(shí)施)的新型半導(dǎo)體材料,是新一代微電子、光電子器件和電路的基礎(chǔ)。它的發(fā)展與應(yīng)用,極有可能觸發(fā)新的技術(shù)革命。
目前低維半導(dǎo)體材料生長與制備主要集中在幾個(gè)比較成熟的材料體系上,如GaAlAs/GaAs,In(Ga)As/GaAs,InGaAs/InAlAs/GaAs,InGaAs/InP,In(Ga)As/InAlAs/InP,InGaAsP/InAlAs/InP以及GeSi/Si等,并在納米微電子和光電子研制方面取得了重大進(jìn)展。俄羅斯約飛技術(shù)物理所MBE小組,柏林的俄德聯(lián)合研制小組和中科院半導(dǎo)體所半導(dǎo)體材料科學(xué)重點(diǎn)實(shí)驗(yàn)室的MBE小組等研制成功的In(Ga)As/GaAs高功率量子點(diǎn)激光器,工作波長lμ蘭左右,單管室溫連續(xù)輸出功率高達(dá)3.6~4W。1.5 寬帶隙半導(dǎo)體材料寬帶隙半導(dǎo)體材料主要指的是金剛石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶體等,特別是SiC、GaN和金剛石薄膜等材料,因具有高熱導(dǎo)率、高電子飽和漂移速度和大臨界擊穿電壓等特點(diǎn),成為研制高頻大功率、耐高溫、抗輻照半導(dǎo)體微電子器件和電路的理想材料;在通信、汽車、航空、航天、石油開采以及國防等方面有著廣泛的應(yīng)用前景。另外,III族氮化物也是很好的光電子材料,在藍(lán)、綠光發(fā)光二極管(LED)和紫、藍(lán)、綠光激光器(LD)以及紫外探測器等應(yīng)用方面也顯示了廣泛的應(yīng)用前景。隨著1993年GaN材料的P型摻雜突破,GaN基材料成為藍(lán)綠光發(fā)光材料的研究熱點(diǎn)。
三、半導(dǎo)體材料發(fā)展的幾點(diǎn)建議
GaAs、InP等單晶材料同國外的差距主要表現(xiàn)在拉晶和晶片加工設(shè)備落后,沒有形成生產(chǎn)能力。相信在國家各部委的統(tǒng)一組織、領(lǐng)導(dǎo)下,并爭取企業(yè)介入,建立我國自己的研究、開發(fā)和生產(chǎn)聯(lián)合體,取各家之長,分工協(xié)作,到2010年趕上世界先進(jìn)水平是可能的。要達(dá)到上述目的,到“十五”末應(yīng)形成以4英寸單晶為主2-3噸/年的SI-GaAs和3-5噸/年摻雜GaAs、InP單晶和開盒就用晶片的生產(chǎn)能力,以滿足我國不斷發(fā)展的微電子和光電子工業(yè)的需求。到2010年,應(yīng)當(dāng)實(shí)現(xiàn)4英寸GaAs生產(chǎn)線的國產(chǎn)化,并具有滿足6英寸線的供片能力。發(fā)展超晶格、量子阱和一維、零維半導(dǎo)體微結(jié)構(gòu)材料。
(一)超晶格、量子阱材料
從目前我國國力和我們已有的基礎(chǔ)出發(fā),應(yīng)以三基色(超高亮度紅、綠和藍(lán)光)材料和光通信材料為主攻方向,并兼顧新一代微電子器件和電路的需求,加強(qiáng)MBE和MOCVD兩個(gè)基地的建設(shè),引進(jìn)必要的適合批量生產(chǎn)的工業(yè)型MBE和MOCVD設(shè)備并著重致力于GaAlAs/GaAs,InGaAlP/InGaP,GaN基藍(lán)綠光材料,InGaAs/InP和InGaAsP/InP等材料體系的實(shí)用化研究是當(dāng)務(wù)之急,爭取在“十五”末,能滿足國內(nèi)2、3和4英寸GaAs生產(chǎn)線所需要的異質(zhì)結(jié)材料。到2010年,每年能具備至少100萬平方英寸MBE和MOCVD微電子和光電子微結(jié)構(gòu)材料的生產(chǎn)能力。達(dá)到本世紀(jì)初的國際水平。
寬帶隙高溫半導(dǎo)體材料如SiC,GaN基微電子材料和單晶金剛石薄膜以及ZnO等材料也應(yīng)擇優(yōu)布點(diǎn),分別做好研究與開發(fā)工作。
(二)一維和零維半導(dǎo)體材料的發(fā)展設(shè)想
基于低維半導(dǎo)體微結(jié)構(gòu)材料的固態(tài)納米量子器件,目前雖然仍處在預(yù)研階段,但極其重要,極有可能觸發(fā)微電子、光電子技術(shù)新的革命。低維量子器件的制造依賴于低維結(jié)構(gòu)材料生長和納米加工技術(shù)的進(jìn)步,而納米結(jié)構(gòu)材料的質(zhì)量又很大程度上取決于生長和制備技術(shù)的水平。因而,集中人力、物力建設(shè)我國自己的納米科學(xué)與技術(shù)研究發(fā)展中心就成為了成敗的關(guān)鍵。具體目標(biāo)是,“十五”末,在半導(dǎo)體量子線、量子點(diǎn)材料制備,量子器件研制和系統(tǒng)集成等若干個(gè)重要研究方向接近當(dāng)時(shí)的國際先進(jìn)水平;2010年在有實(shí)用化前景的量子點(diǎn)激光器,量子共振隧穿器件和單電子器件及其集成等研發(fā)方面,達(dá)到國際先進(jìn)水平,并在國際該領(lǐng)域占有一席之地??梢灶A(yù)料,它的實(shí)施必將極大地增強(qiáng)我國的經(jīng)濟(jì)和國防實(shí)力。
結(jié)束語
隨著信息技術(shù)的快速發(fā)展和各種電子器件、 產(chǎn)品等要求不斷的提高, 半導(dǎo)體材料在未來的發(fā)展中依然起著重要的作用。 在經(jīng)過以 Si、GaAs 為代表的第一代、第二代半導(dǎo)體材料發(fā)展歷程后,第三代半導(dǎo)體材料的成為了當(dāng)前的研究熱點(diǎn)。 我們應(yīng)當(dāng)在兼顧第一代和第二代半導(dǎo)體發(fā)展的同時(shí), 加速發(fā)展第三代半導(dǎo)體材料。 目前的半導(dǎo)體材料整體朝著高完整性、高均勻性、大尺寸、薄膜化、集成化、多功能化方向邁進(jìn)。 隨著微電子時(shí)代向光電子時(shí)代逐漸過渡, 我們需要進(jìn)一步提高半導(dǎo)體技術(shù)和產(chǎn)業(yè)的研究,開創(chuàng)出半導(dǎo)體材料的新領(lǐng)域。 相信不久的將來,通過各種半導(dǎo)體材料的不斷探究和應(yīng)用,我們的科技、產(chǎn)品、生活等方面定能得到巨大的提高和發(fā)展!
參考文獻(xiàn)
[1]沈能玨,孫同年,余聲明,張臣.現(xiàn)代電子材料技術(shù).信息裝備的基石[M].北京:國防工業(yè)出版社,2002.
[2]靳曉宇.半導(dǎo)體材料的應(yīng)用與發(fā)展研究[J].大眾商務(wù),2009,(102).
[3]彭杰.淺析幾種半導(dǎo)體材料的應(yīng)用與發(fā)展[J].硅谷, 2008,(10).
篇6
十三所是國有企業(yè)單位。是中國成立最早、規(guī)模最大、技術(shù)力量雄厚、專業(yè)結(jié)構(gòu)配套的綜合性半導(dǎo)體研究所。石家莊十三所、全稱中國電子科技集團(tuán)公司第十三研究所?,F(xiàn)有職工3500多人,其中研究員57人,高級工程師300多人,工程師近千人,碩士、博士240多人。中國電子科技集團(tuán)公司第十三研究所,位于河北省石家莊市,是我國規(guī)模較大、技術(shù)力量雄厚、專業(yè)結(jié)構(gòu)配套齊全的大型綜合性半導(dǎo)體研究所,專業(yè)方向?yàn)槲㈦娮印⒐怆娮?、微電子機(jī)械系統(tǒng)、光機(jī)電微系統(tǒng)和、材料和計(jì)量檢測等基礎(chǔ)支撐領(lǐng)域,是國家工學(xué)碩士招生培養(yǎng)單位,主要研究光電子技術(shù)、軟件工程開發(fā)、電氣自動(dòng)化與智能控制等。
十三所擁有國家級專用集成電路重點(diǎn)實(shí)驗(yàn)室、國家科技部863計(jì)劃光電子器件產(chǎn)業(yè)化基地和MEMS工藝封裝基地、博士后科研工作站以及十個(gè)專業(yè)部、研究室,生產(chǎn)線和8個(gè)控股的高新技術(shù)產(chǎn)業(yè)公司,其產(chǎn)品涵蓋半導(dǎo)體材料和電子封裝等、各類半導(dǎo)體分立器件和集成電路以及微波毫米波的模塊組件和小整機(jī)。
(來源:文章屋網(wǎng) )
篇7
訊:電子商務(wù)的迅速發(fā)展使國內(nèi)企業(yè)都看中了網(wǎng)上購物這片沃土。隨著電子商務(wù)的興起,國內(nèi)中小企業(yè)競相入駐電子商務(wù)平臺,眾多品牌紛紛開設(shè)自己的B2C電子商務(wù)業(yè)務(wù),以及在淘寶購物平臺上建立旗艦店。行業(yè)內(nèi)有一些企業(yè)高調(diào)推出了自己的網(wǎng)絡(luò)品牌或者設(shè)立了獨(dú)立的電子商務(wù)部門,進(jìn)行網(wǎng)絡(luò)渠道建設(shè),但是面對競爭激烈的電子商務(wù)平臺,網(wǎng)絡(luò)推廣方式的轉(zhuǎn)變成為成功的重要途徑。
首先:網(wǎng)絡(luò)作為推廣渠道,給傳統(tǒng)渠道提供新的客戶。比如貝佳斯,服務(wù)行業(yè)往往不能在網(wǎng)絡(luò)上完成交易和消費(fèi)。很多奢侈品、高價(jià)值產(chǎn)品如汽車和房產(chǎn)等,其電子商務(wù)的最主要意義就是通過網(wǎng)絡(luò)推廣,增加新的客戶。有些客戶可能在網(wǎng)絡(luò)上比較了解產(chǎn)品,但還是喜歡通過傳統(tǒng)渠道交易,比如攜程上的很多客戶,往往是喜歡通過電話來訂購機(jī)票和旅游產(chǎn)品。有個(gè)做保健品的電子商務(wù)公司,專門為喜歡在店面交易的老年人開辟了實(shí)體店,這些會(huì)員在網(wǎng)絡(luò)和產(chǎn)品目錄里初步了解產(chǎn)品,然后到實(shí)體店購買,其單位租金貢獻(xiàn)的銷售額遠(yuǎn)遠(yuǎn)大于實(shí)體店。
其次:網(wǎng)絡(luò)推廣要以作為客戶維護(hù)和重復(fù)購買的渠道而進(jìn)行。銷售人員憑借個(gè)人關(guān)系,店面憑借地理位置,自然會(huì)有很高的客戶黏性和回頭客。但是網(wǎng)絡(luò)渠道與傳統(tǒng)渠道有本質(zhì)的不同:“網(wǎng)店之間的距離只有一個(gè)鼠標(biāo)點(diǎn)擊的距離”,客戶的自然回頭率很低??啃驴蛻舻囊淮涡凿N售就賺錢,這個(gè)時(shí)代已經(jīng)過去,客戶關(guān)系維護(hù)和重復(fù)銷售是電子商務(wù)盈利的基礎(chǔ)。很多知名的電子商務(wù)公司的重復(fù)購買,其實(shí)是靠低價(jià)和增加產(chǎn)品在支撐。對于傳統(tǒng)企業(yè),除非你的目的是找風(fēng)投,做投機(jī),否則靠犧牲利潤來實(shí)現(xiàn)重購的模式,資金鏈斷裂是遲早的事情。網(wǎng)絡(luò)研究中心稱:網(wǎng)絡(luò)的互動(dòng)性、即時(shí)性、多樣性,使其成為客戶聯(lián)系的成本最低、效率最高的渠道。如電子郵件、博客、MSN、論壇、視頻、SNS都可以成為提高客戶黏性的有力工具,但是遺憾的是,絕大多數(shù)的傳統(tǒng)企業(yè)僅僅把網(wǎng)絡(luò)營銷應(yīng)用在前端的推廣和新客戶的開發(fā)上,而不會(huì)使用這些工具來維護(hù)客戶關(guān)系,實(shí)現(xiàn)低成本的重購。當(dāng)然,對于高附加值的產(chǎn)品,如高檔化妝品、服裝等,僅僅靠一般的搜索引擎營銷、電子郵件群發(fā)等,不可能有效地提高客戶的重復(fù)購買,還是要與其他傳統(tǒng)渠道配合,如線下的活動(dòng)、電話營銷、目錄等。
開發(fā)網(wǎng)絡(luò)銷售,不是在傳統(tǒng)渠道上做加法,而是做乘法。你可以僅僅利用網(wǎng)絡(luò)作為新的推廣渠道、成交渠道,或者重購渠道。電子商務(wù)營銷專家黃相如指出:不要孤立地開展網(wǎng)絡(luò)銷售,一定要與你已經(jīng)成熟的渠道結(jié)合,并巧妙地利用直復(fù)營銷的渠道,如電話、直郵、電郵和數(shù)據(jù)庫營銷等將電子商務(wù)的商業(yè)價(jià)值最大化。最近有個(gè)朋友搞了一個(gè)汽車配件商城,在網(wǎng)上賣各種汽車配件,推廣、銷售和服務(wù)全部在網(wǎng)絡(luò)上完成,但是客戶買完后,還要自己抱著輪胎找維修點(diǎn)安裝。而另外一個(gè)做同樣業(yè)務(wù)的朋友所采用的模式卻完全不同,他主要利用網(wǎng)絡(luò)實(shí)現(xiàn)配件的銷售和收款,通過傳統(tǒng)的汽車維修點(diǎn)完成安裝與服務(wù),配件直接發(fā)貨到指定的維修點(diǎn),通過電話實(shí)現(xiàn)整個(gè)服務(wù)過程,推廣也是網(wǎng)絡(luò)與車主數(shù)據(jù)庫營銷結(jié)合起來。這家電子商務(wù)公司,雖然規(guī)模不到,但一直盈利,銷售和客戶穩(wěn)健增長。(來源:美妝新聞)
篇8
[關(guān)鍵詞]比較法; 光電子學(xué); 教學(xué); 雙語課程
中圖分類號:H319 文獻(xiàn)標(biāo)識碼:A 文章編號:1009-914X(2016)02-0001-02
概述
《Optoelectronics》課程是光電信息科學(xué)與工程等專業(yè)一門重要的專業(yè)基礎(chǔ)課程,主要講述光的產(chǎn)生、光的探測、光的調(diào)制的基本原理。在高校專業(yè)課程教學(xué)中,為了讓學(xué)生接觸到本專業(yè)的一些前沿知識和最新研究進(jìn)展,同時(shí)也是為了提高學(xué)生閱讀外文科技書籍和資料的能力,課程采用外文原版教材和中英文參考書[1-3],使用雙語教學(xué),學(xué)生剛接觸該課程時(shí)出現(xiàn)畏難情緒,缺乏興趣和主動(dòng)性。為調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,提高教學(xué)效率和效果,在教學(xué)中應(yīng)用比較法,不僅使學(xué)生在前修課程或本課程前面章節(jié)已學(xué)的知識點(diǎn)得到鞏固和深化,而且使新知識點(diǎn)的教學(xué)事半功倍。
比較法的應(yīng)用
比較法能夠開拓學(xué)生的思維空間,在分析鑒別中把握知識的重點(diǎn),較正確地把握概念、原理、結(jié)構(gòu)、計(jì)算方法之間的聯(lián)系與區(qū)別。將比較法如何運(yùn)用于教學(xué)中呢?比較法教學(xué),就是把內(nèi)容或形式上有聯(lián)系的知識點(diǎn)進(jìn)行對比、分析,指出其相同點(diǎn)、不同點(diǎn)的教學(xué)方法[4]。其主要方法:
(一)求同比較。就是將相同的知識,或性質(zhì)相似的知識點(diǎn)放在一起加以比較。這樣通過相同點(diǎn)的比較,學(xué)生把握兩組或多組知識點(diǎn)的內(nèi)涵,能夠使理解深入并真正掌握。
(二)求異比較。事物之間存在差異,這是極普遍的現(xiàn)象。在教學(xué)實(shí)踐中,求異比較是啟發(fā)學(xué)生盡量多地尋找出不同點(diǎn),通過兩組或多組知識點(diǎn)間差異的比較,抓住其本質(zhì)區(qū)別,激發(fā)學(xué)生拓寬對知識點(diǎn)的理解的廣度,并可使學(xué)生獲得更新的結(jié)構(gòu)、性能的設(shè)計(jì)思路。
高校教學(xué)中,在前修課程的基礎(chǔ)上,通過專業(yè)基礎(chǔ)課的學(xué)習(xí),為后面的專業(yè)課程打下牢固的基礎(chǔ)。《Optoelectronics》著重于與光通信技術(shù)相關(guān)的光電子器件,知識點(diǎn)教學(xué)主要分為概念、原理、結(jié)構(gòu)和特性參量的教學(xué)。
一、比較法用于關(guān)鍵概念的教學(xué)
《Optoelectronics》雙語課程中新概念多,仔細(xì)歸類,發(fā)現(xiàn)可作比較的概念不少,如:帶間躍遷和帶內(nèi)躍遷、損耗和增益等。在關(guān)鍵概念的教學(xué)中,引導(dǎo)學(xué)生與前修課程或本課程前面已學(xué)的相關(guān)概念進(jìn)行比較,或者直接將兩個(gè)并列的概念同時(shí)引入,比較其異同點(diǎn)。
如圖1的PPT所示,在1.6節(jié)引入帶內(nèi)躍遷(Intraband transitions)時(shí),與前面已學(xué)的1.4節(jié)中的帶間躍遷通過示意圖、條件、躍遷前后狀態(tài)的變化以及各自應(yīng)用進(jìn)行比較,學(xué)生不僅很快理解了“帶內(nèi)躍遷”新概念,而且對“帶間躍遷”掌握得更深刻。
自發(fā)輻射和受激輻射是4.2節(jié)中同時(shí)引入的概念,教學(xué)中:
先給出定義。在熱平衡下,如果在半導(dǎo)體的導(dǎo)帶與價(jià)帶中分別有一定數(shù)量的電子與空穴,導(dǎo)帶中電子以一定的幾率與價(jià)帶中空穴復(fù)合并以光子形式放出復(fù)合所產(chǎn)生的能量的過程稱為自發(fā)發(fā)射躍遷;導(dǎo)帶電子與價(jià)帶空穴復(fù)合過程在適當(dāng)能量的光子激勵(lì)下進(jìn)行的,由復(fù)合產(chǎn)生的光子與激發(fā)該過程的光子有完全相同的特性(包括頻率、相位和傳播方向等),這種躍遷過程稱為受激發(fā)射。
再進(jìn)行求同比較和求異比較。相同點(diǎn)如圖2所示,兩種過程前后的狀態(tài)變化都是導(dǎo)帶電子與價(jià)帶空穴復(fù)合發(fā)出光子。不同點(diǎn)主要是條件不同,一個(gè)是自發(fā)的,一個(gè)必須有光子激勵(lì)且光子能量等于禁帶寬度;發(fā)出的光子的特性不同,自發(fā)輻射發(fā)出的光子是非相干的,對應(yīng)半導(dǎo)體發(fā)光二極管(LED)的工作原理;受激輻射發(fā)出的光子是全同光子,是相干光,對應(yīng)
半導(dǎo)體激光器(LD)、半導(dǎo)體光放大器(SOA)的工作原理。
通過這樣的教學(xué)步驟,學(xué)生易于理解并在比較中牢固掌握概念,在后續(xù)器件原理的學(xué)習(xí)中,能夠熟練應(yīng)用概念,結(jié)合器件結(jié)構(gòu)易于理解工作原理。
二、比較法用于基本原理的教學(xué)
基本原理是各課程的重點(diǎn)和基礎(chǔ)。在《Optoelectronics》雙語課程中,主要是各種器件的工作原理,如檢測器原理與光源原理;各種工作模式的原理,如小信號調(diào)制、大信號調(diào)制和脈碼調(diào)制。
《Optoelectronics》雙語課程的第二章主要闡述了光電檢測器――PIN和雪崩二極管(APD),第三章的重點(diǎn)是LED,第四章著重于LD的靜態(tài)。那么在第四章教學(xué)的開始,如圖3所示,將課程中光電子器件的兩大類――檢測器(PIN、APD)和光源(LED、LD)從整體上進(jìn)行比較。首先找出共同點(diǎn),無論檢測器還是光源都是換能器(Transmitter),只不過檢測器是將光能轉(zhuǎn)換成電能,而光源是將電能轉(zhuǎn)換成光能,這樣的相同之處就可以引導(dǎo)學(xué)生學(xué)習(xí)第四章時(shí)類比前兩章的方法。然后找不同點(diǎn),主要是結(jié)構(gòu)和偏置狀態(tài)不同,檢測器反向偏置,光源正向偏置,這樣就可歸結(jié)于前修課程中的不同偏置下的半導(dǎo)體PN結(jié)的工作原理,所以第四章中的很多公式的推導(dǎo)和分析只要抓住結(jié)構(gòu)和偏置的不同,借鑒已有的知識和方法,難點(diǎn)就迎刃而解了。
類似的原理用比較法講解,也起到了很好的效果,如圖4所示,在5.2節(jié)引入LD的三種直接調(diào)制方式的原理時(shí),通過三種調(diào)制方式輸入輸出波形的比較,讓學(xué)生直觀明了地理解了這三種調(diào)制方式,學(xué)生當(dāng)堂能自己作分析比較:小信號調(diào)制和脈碼調(diào)制本質(zhì)上屬于一類,輸入脈沖信號都在閾值之上,所不同的僅在于輸入信號在閾值之上的調(diào)制幅度的大小;大信號調(diào)制,并不是輸入信號大,而是指輸入信號在閾值的上下變化,因此響應(yīng)速度是最慢的。
三、比較法用于核心器件結(jié)構(gòu)的教學(xué)
前面已提到課程中涉及的光電子器件主要是檢測器PIN、APD和光源LED、LD,差別主要在于結(jié)構(gòu),所以本課程中引入新結(jié)構(gòu)的時(shí)候,一般都會(huì)與前面同一類型的結(jié)構(gòu)進(jìn)行比較,如PIN和APD、面發(fā)射和邊發(fā)射LED、增益導(dǎo)引型和折射率導(dǎo)引型LD等。
在2.7節(jié)引入APD的典型結(jié)構(gòu)時(shí),與2.6節(jié)的PIN的結(jié)構(gòu)比較,如圖5所示。找出它們的異同,發(fā)現(xiàn)最外的兩層都是重?fù)诫s而且很薄,吸收區(qū)都很厚,區(qū)別在于APD多加了一層,這層作為雪崩區(qū),電場強(qiáng)度大而且盡量保持均勻,因此接下來的教學(xué)主要圍繞這層高場強(qiáng)的雪崩區(qū)展開,這樣重點(diǎn)突出而且引入快,也引起學(xué)生的興趣第3.5節(jié)闡述LED的先進(jìn)結(jié)構(gòu),其中邊發(fā)射和面發(fā)射的結(jié)構(gòu)如圖6中左邊的兩個(gè)結(jié)構(gòu)圖所示,應(yīng)用比較法,突出主要異同點(diǎn):都有異質(zhì)PN結(jié);不同之處以如圖6中右邊兩個(gè)簡圖所示,邊發(fā)射LED頂面是條形電極,側(cè)邊發(fā)光,類似LD的發(fā)光方式;面發(fā)射LED為了得到準(zhǔn)直的光束,在頂面電極開口處放置微透鏡聚焦。運(yùn)用對比的方法,并化繁為簡,畫出簡圖,能讓學(xué)生一目了然,對結(jié)構(gòu)特點(diǎn)也易掌握。
四、比較法用于重要特性參量計(jì)算的教學(xué)
比較法不僅適用于定性知識的教學(xué),對器件特性的定量計(jì)算也起到觸類旁通的效果。
2.4節(jié)和2.6節(jié)中都有光電流的計(jì)算,可通過比較法,在2.4節(jié)的基礎(chǔ)上便捷地推導(dǎo)出2.6節(jié)中的光電流。如圖7中上面的能帶圖所示,當(dāng)光入射到反向偏置的PN結(jié)中,產(chǎn)生的光電流包括P區(qū)和N區(qū)中的擴(kuò)散電流以及耗盡區(qū)的漂移電流;而當(dāng)光入射反向偏置的PIN檢測器,如圖7中下面的能帶圖所示,P和N都很薄,擴(kuò)散電流可忽略,而I區(qū)的厚度比PN結(jié)中的耗盡區(qū)的厚度大得多,所以計(jì)算其中的漂移電流時(shí),積分號中的產(chǎn)生率不能近似為常數(shù)。
課程中最重要的參量計(jì)算是圍繞器件的轉(zhuǎn)換效率,如圖8所示,在第二章雖然反復(fù)強(qiáng)調(diào)PIN和APD的轉(zhuǎn)換效率、輸入光子流、輸出電流三者的互算關(guān)系,但在作業(yè)中有不少同學(xué)沒有理解,只是背公式,因此出現(xiàn)不少錯(cuò)誤。在第三章中再次提到LED的轉(zhuǎn)換效率、輸入光子流、輸出電流三者的互算關(guān)系時(shí),利用比較法,抓住共同點(diǎn)都是換能器,輸入量乘以轉(zhuǎn)換效率得到輸出量,這樣大多數(shù)學(xué)生能馬上領(lǐng)會(huì)到效率在等式中的位置對于檢測器和光源是不同的,因?yàn)閮烧叩妮斎胼敵隽空孟喾础?/p>
教學(xué)法應(yīng)用體會(huì)
實(shí)踐表明, 充分利用比較法進(jìn)行課程教學(xué), 可以幫助學(xué)生理解新概念、基本原理、器件結(jié)構(gòu)以及特性參量的計(jì)算方法,并鞏固原有知識,激發(fā)學(xué)生的學(xué)習(xí)興趣,主動(dòng)在比較中尋找規(guī)律,以達(dá)到觸類旁通,充分培養(yǎng)學(xué)生綜合分析能力,提高教學(xué)效果。
參考文獻(xiàn)
[1] Jasprit Singh. 半導(dǎo)體光電子學(xué)(英文版)[M].紐約:McGraw-Hill出版社, 1995.
[2] S. O. Kasap.光電學(xué)與光子學(xué)(英文版)[M]. 倫敦:Prentice Hall出版社, 2001.
[3]黃德修.半導(dǎo)體光電子學(xué)[M].成都:電子科技大學(xué)出版社,2013.
篇9
關(guān)鍵詞半導(dǎo)體材料量子線量子點(diǎn)材料光子晶體
1半導(dǎo)體材料的戰(zhàn)略地位
上世紀(jì)中葉,單晶硅和半導(dǎo)體晶體管的發(fā)明及其硅集成電路的研制成功,導(dǎo)致了電子工業(yè)革命;上世紀(jì)70年代初石英光導(dǎo)纖維材料和GaAs激光器的發(fā)明,促進(jìn)了光纖通信技術(shù)迅速發(fā)展并逐步形成了高新技術(shù)產(chǎn)業(yè),使人類進(jìn)入了信息時(shí)代。超晶格概念的提出及其半導(dǎo)體超晶格、量子阱材料的研制成功,徹底改變了光電器件的設(shè)計(jì)思想,使半導(dǎo)體器件的設(shè)計(jì)與制造從“雜質(zhì)工程”發(fā)展到“能帶工程”。納米科學(xué)技術(shù)的發(fā)展和應(yīng)用,將使人類能從原子、分子或納米尺度水平上控制、操縱和制造功能強(qiáng)大的新型器件與電路,必將深刻地影響著世界的政治、經(jīng)濟(jì)格局和軍事對抗的形式,徹底改變?nèi)藗兊纳罘绞健?/p>
2幾種主要半導(dǎo)體材料的發(fā)展現(xiàn)狀與趨勢
2.1硅材料
從提高硅集成電路成品率,降低成本看,增大直拉硅(CZ-Si)單晶的直徑和減小微缺陷的密度仍是今后CZ-Si發(fā)展的總趨勢。目前直徑為8英寸(200mm)的Si單晶已實(shí)現(xiàn)大規(guī)模工業(yè)生產(chǎn),基于直徑為12英寸(300mm)硅片的集成電路(IC’s)技術(shù)正處在由實(shí)驗(yàn)室向工業(yè)生產(chǎn)轉(zhuǎn)變中。目前300mm,0.18μm工藝的硅ULSI生產(chǎn)線已經(jīng)投入生產(chǎn),300mm,0.13μm工藝生產(chǎn)線也將在2003年完成評估。18英寸重達(dá)414公斤的硅單晶和18英寸的硅園片已在實(shí)驗(yàn)室研制成功,直徑27英寸硅單晶研制也正在積極籌劃中。
從進(jìn)一步提高硅IC’S的速度和集成度看,研制適合于硅深亞微米乃至納米工藝所需的大直徑硅外延片會(huì)成為硅材料發(fā)展的主流。另外,SOI材料,包括智能剝離(Smartcut)和SIMOX材料等也發(fā)展很快。目前,直徑8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在開發(fā)中。
理論分析指出30nm左右將是硅MOS集成電路線寬的“極限”尺寸。這不僅是指量子尺寸效應(yīng)對現(xiàn)有器件特性影響所帶來的物理限制和光刻技術(shù)的限制問題,更重要的是將受硅、SiO2自身性質(zhì)的限制。盡管人們正在積極尋找高K介電絕緣材料(如用Si3N4等來替代SiO2),低K介電互連材料,用Cu代替Al引線以及采用系統(tǒng)集成芯片技術(shù)等來提高ULSI的集成度、運(yùn)算速度和功能,但硅將最終難以滿足人類不斷的對更大信息量需求。為此,人們除尋求基于全新原理的量子計(jì)算和DNA生物計(jì)算等之外,還把目光放在以GaAs、InP為基的化合物半導(dǎo)體材料,特別是二維超晶格、量子阱,一維量子線與零維量子點(diǎn)材料和可與硅平面工藝兼容GeSi合金材料等,這也是目前半導(dǎo)體材料研發(fā)的重點(diǎn)。
2.2GaAs和InP單晶材料
GaAs和InP與硅不同,它們都是直接帶隙材料,具有電子飽和漂移速度高,耐高溫,抗輻照等特點(diǎn);在超高速、超高頻、低功耗、低噪音器件和電路,特別在光電子器件和光電集成方面占有獨(dú)特的優(yōu)勢。
目前,世界GaAs單晶的總年產(chǎn)量已超過200噸,其中以低位錯(cuò)密度的垂直梯度凝固法(VGF)和水平(HB)方法生長的2-3英寸的導(dǎo)電GaAs襯底材料為主;近年來,為滿足高速移動(dòng)通信的迫切需求,大直徑(4,6和8英寸)的SI-GaAs發(fā)展很快。美國莫托羅拉公司正在籌建6英寸的SI-GaAs集成電路生產(chǎn)線。InP具有比GaAs更優(yōu)越的高頻性能,發(fā)展的速度更快,但研制直徑3英寸以上大直徑的InP單晶的關(guān)鍵技術(shù)尚未完全突破,價(jià)格居高不下。
GaAs和InP單晶的發(fā)展趨勢是:(1).增大晶體直徑,目前4英寸的SI-GaAs已用于生產(chǎn),預(yù)計(jì)本世紀(jì)初的頭幾年直徑為6英寸的SI-GaAs也將投入工業(yè)應(yīng)用。(2).提高材料的電學(xué)和光學(xué)微區(qū)均勻性。(3).降低單晶的缺陷密度,特別是位錯(cuò)。(4).GaAs和InP單晶的VGF生長技術(shù)發(fā)展很快,很有可能成為主流技術(shù)。
2.3半導(dǎo)體超晶格、量子阱材料
半導(dǎo)體超薄層微結(jié)構(gòu)材料是基于先進(jìn)生長技術(shù)(MBE,MOCVD)的新一代人工構(gòu)造材料。它以全新的概念改變著光電子和微電子器件的設(shè)計(jì)思想,出現(xiàn)了“電學(xué)和光學(xué)特性可剪裁”為特征的新范疇,是新一代固態(tài)量子器件的基礎(chǔ)材料。
(1)Ⅲ-V族超晶格、量子阱材料。GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP,InGaAsP/InP等GaAs、InP基晶格匹配和應(yīng)變補(bǔ)償材料體系已發(fā)展得相當(dāng)成熟,已成功地用來制造超高速,超高頻微電子器件和單片集成電路。高電子遷移率晶體管(HEMT),贗配高電子遷移率晶體管(P-HEMT)器件最好水平已達(dá)fmax=600GHz,輸出功率58mW,功率增益6.4db;雙異質(zhì)結(jié)雙極晶體管(HBT)的最高頻率fmax也已高達(dá)500GHz,HEMT邏輯電路研制也發(fā)展很快。基于上述材料體系的光通信用1.3μm和1.5μm的量子阱激光器和探測器,紅、黃、橙光發(fā)光二極管和紅光激光器以及大功率半導(dǎo)體量子阱激光器已商品化;表面光發(fā)射器件和光雙穩(wěn)器件等也已達(dá)到或接近達(dá)到實(shí)用化水平。目前,研制高質(zhì)量的1.5μm分布反饋(DFB)激光器和電吸收(EA)調(diào)制器單片集成InP基多量子阱材料和超高速驅(qū)動(dòng)電路所需的低維結(jié)構(gòu)材料是解決光纖通信瓶頸問題的關(guān)鍵,在實(shí)驗(yàn)室西門子公司已完成了80×40Gbps傳輸40km的實(shí)驗(yàn)。另外,用于制造準(zhǔn)連續(xù)兆瓦級大功率激光陣列的高質(zhì)量量子阱材料也受到人們的重視。
雖然常規(guī)量子阱結(jié)構(gòu)端面發(fā)射激光器是目前光電子領(lǐng)域占統(tǒng)治地位的有源器件,但由于其有源區(qū)極薄(~0.01μm)端面光電災(zāi)變損傷,大電流電熱燒毀和光束質(zhì)量差一直是此類激光器的性能改善和功率提高的難題。采用多有源區(qū)量子級聯(lián)耦合是解決此難題的有效途徑之一。我國早在1999年,就研制成功980nmInGaAs帶間量子級聯(lián)激光器,輸出功率達(dá)5W以上;2000年初,法國湯姆遜公司又報(bào)道了單個(gè)激光器準(zhǔn)連續(xù)輸出功率超過10瓦好結(jié)果。最近,我國的科研工作者又提出并開展了多有源區(qū)縱向光耦合垂直腔面發(fā)射激光器研究,這是一種具有高增益、極低閾值、高功率和高光束質(zhì)量的新型激光器,在未來光通信、光互聯(lián)與光電信息處理方面有著良好的應(yīng)用前景。
為克服PN結(jié)半導(dǎo)體激光器的能隙對激光器波長范圍的限制,1994年美國貝爾實(shí)驗(yàn)室發(fā)明了基于量子阱內(nèi)子帶躍遷和阱間共振隧穿的量子級聯(lián)激光器,突破了半導(dǎo)體能隙對波長的限制。自從1994年InGaAs/InAIAs/InP量子級聯(lián)激光器(QCLs)發(fā)明以來,Bell實(shí)驗(yàn)室等的科學(xué)家,在過去的7年多的時(shí)間里,QCLs在向大功率、高溫和單膜工作等研究方面取得了顯著的進(jìn)展。2001年瑞士Neuchatel大學(xué)的科學(xué)家采用雙聲子共振和三量子阱有源區(qū)結(jié)構(gòu)使波長為9.1μm的QCLs的工作溫度高達(dá)312K,連續(xù)輸出功率3mW。量子級聯(lián)激光器的工作波長已覆蓋近紅外到遠(yuǎn)紅外波段(3-87μm),并在光通信、超高分辨光譜、超高靈敏氣體傳感器、高速調(diào)制器和無線光學(xué)連接等方面顯示出重要的應(yīng)用前景。中科院上海微系統(tǒng)和信息技術(shù)研究所于1999年研制成功120K5μm和250K8μm的量子級聯(lián)激光器;中科院半導(dǎo)體研究所于2000年又研制成功3.7μm室溫準(zhǔn)連續(xù)應(yīng)變補(bǔ)償量子級聯(lián)激光器,使我國成為能研制這類高質(zhì)量激光器材料為數(shù)不多的幾個(gè)國家之一。
目前,Ⅲ-V族超晶格、量子阱材料作為超薄層微結(jié)構(gòu)材料發(fā)展的主流方向,正從直徑3英寸向4英寸過渡;生產(chǎn)型的MBE和M0CVD設(shè)備已研制成功并投入使用,每臺年生產(chǎn)能力可高達(dá)3.75×104片4英寸或1.5×104片6英寸。英國卡迪夫的MOCVD中心,法國的PicogigaMBE基地,美國的QED公司,Motorola公司,日本的富士通,NTT,索尼等都有這種外延材料出售。生產(chǎn)型MBE和MOCVD設(shè)備的成熟與應(yīng)用,必然促進(jìn)襯底材料設(shè)備和材料評價(jià)技術(shù)的發(fā)展。
(2)硅基應(yīng)變異質(zhì)結(jié)構(gòu)材料。硅基光、電器件集成一直是人們所追求的目標(biāo)。但由于硅是間接帶隙,如何提高硅基材料發(fā)光效率就成為一個(gè)亟待解決的問題。雖經(jīng)多年研究,但進(jìn)展緩慢。人們目前正致力于探索硅基納米材料(納米Si/SiO2),硅基SiGeC體系的Si1-yCy/Si1-xGex低維結(jié)構(gòu),Ge/Si量子點(diǎn)和量子點(diǎn)超晶格材料,Si/SiC量子點(diǎn)材料,GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED發(fā)光器件和有關(guān)納米硅的受激放大現(xiàn)象的報(bào)道,使人們看到了一線希望。
另一方面,GeSi/Si應(yīng)變層超晶格材料,因其在新一代移動(dòng)通信上的重要應(yīng)用前景,而成為目前硅基材料研究的主流。Si/GeSiMODFET和MOSFET的最高截止頻率已達(dá)200GHz,HBT最高振蕩頻率為160GHz,噪音在10GHz下為0.9db,其性能可與GaAs器件相媲美。
盡管GaAs/Si和InP/Si是實(shí)現(xiàn)光電子集成理想的材料體系,但由于晶格失配和熱膨脹系數(shù)等不同造成的高密度失配位錯(cuò)而導(dǎo)致器件性能退化和失效,防礙著它的使用化。最近,Motolora等公司宣稱,他們在12英寸的硅襯底上,用鈦酸鍶作協(xié)變層(柔性層),成功的生長了器件級的GaAs外延薄膜,取得了突破性的進(jìn)展。
2.4一維量子線、零維量子點(diǎn)半導(dǎo)體微結(jié)構(gòu)材料
基于量子尺寸效應(yīng)、量子干涉效應(yīng),量子隧穿效應(yīng)和庫侖阻效應(yīng)以及非線性光學(xué)效應(yīng)等的低維半導(dǎo)體材料是一種人工構(gòu)造(通過能帶工程實(shí)施)的新型半導(dǎo)體材料,是新一代微電子、光電子器件和電路的基礎(chǔ)。它的發(fā)展與應(yīng)用,極有可能觸發(fā)新的技術(shù)革命。
目前低維半導(dǎo)體材料生長與制備主要集中在幾個(gè)比較成熟的材料體系上,如GaAlAs/GaAs,In(Ga)As/GaAs,InGaAs/InAlAs/GaAs,InGaAs/InP,In(Ga)As/InAlAs/InP,InGaAsP/InAlAs/InP以及GeSi/Si等,并在納米微電子和光電子研制方面取得了重大進(jìn)展。俄羅斯約飛技術(shù)物理所MBE小組,柏林的俄德聯(lián)合研制小組和中科院半導(dǎo)體所半導(dǎo)體材料科學(xué)重點(diǎn)實(shí)驗(yàn)室的MBE小組等研制成功的In(Ga)As/GaAs高功率量子點(diǎn)激光器,工作波長lμm左右,單管室溫連續(xù)輸出功率高達(dá)3.6~4W。特別應(yīng)當(dāng)指出的是我國上述的MBE小組,2001年通過在高功率量子點(diǎn)激光器的有源區(qū)材料結(jié)構(gòu)中引入應(yīng)力緩解層,抑制了缺陷和位錯(cuò)的產(chǎn)生,提高了量子點(diǎn)激光器的工作壽命,室溫下連續(xù)輸出功率為1W時(shí)工作壽命超過5000小時(shí),這是大功率激光器的一個(gè)關(guān)鍵參數(shù),至今未見國外報(bào)道。
在單電子晶體管和單電子存貯器及其電路的研制方面也獲得了重大進(jìn)展,1994年日本NTT就研制成功溝道長度為30nm納米單電子晶體管,并在150K觀察到柵控源-漏電流振蕩;1997年美國又報(bào)道了可在室溫工作的單電子開關(guān)器件,1998年Yauo等人采用0.25微米工藝技術(shù)實(shí)現(xiàn)了128Mb的單電子存貯器原型樣機(jī)的制造,這是在單電子器件在高密度存貯電路的應(yīng)用方面邁出的關(guān)鍵一步。目前,基于量子點(diǎn)的自適應(yīng)網(wǎng)絡(luò)計(jì)算機(jī),單光子源和應(yīng)用于量子計(jì)算的量子比特的構(gòu)建等方面的研究也正在進(jìn)行中。
與半導(dǎo)體超晶格和量子點(diǎn)結(jié)構(gòu)的生長制備相比,高度有序的半導(dǎo)體量子線的制備技術(shù)難度較大。中科院半導(dǎo)體所半導(dǎo)體材料科學(xué)重點(diǎn)實(shí)驗(yàn)室的MBE小組,在繼利用MBE技術(shù)和SK生長模式,成功地制備了高空間有序的InAs/InAI(Ga)As/InP的量子線和量子線超晶格結(jié)構(gòu)的基礎(chǔ)上,對InAs/InAlAs量子線超晶格的空間自對準(zhǔn)(垂直或斜對準(zhǔn))的物理起因和生長控制進(jìn)行了研究,取得了較大進(jìn)展。
王中林教授領(lǐng)導(dǎo)的喬治亞理工大學(xué)的材料科學(xué)與工程系和化學(xué)與生物化學(xué)系的研究小組,基于無催化劑、控制生長條件的氧化物粉末的熱蒸發(fā)技術(shù),成功地合成了諸如ZnO、SnO2、In2O3和Ga2O3等一系列半導(dǎo)體氧化物納米帶,它們與具有圓柱對稱截面的中空納米管或納米線不同,這些原生的納米帶呈現(xiàn)出高純、結(jié)構(gòu)均勻和單晶體,幾乎無缺陷和位錯(cuò);納米線呈矩形截面,典型的寬度為20-300nm,寬厚比為5-10,長度可達(dá)數(shù)毫米。這種半導(dǎo)體氧化物納米帶是一個(gè)理想的材料體系,可以用來研究載流子維度受限的輸運(yùn)現(xiàn)象和基于它的功能器件制造。香港城市大學(xué)李述湯教授和瑞典隆德大學(xué)固體物理系納米中心的LarsSamuelson教授領(lǐng)導(dǎo)的小組,分別在SiO2/Si和InAs/InP半導(dǎo)體量子線超晶格結(jié)構(gòu)的生長制各方面也取得了重要進(jìn)展。
低維半導(dǎo)體結(jié)構(gòu)制備的方法很多,主要有:微結(jié)構(gòu)材料生長和精細(xì)加工工藝相結(jié)合的方法,應(yīng)變自組裝量子線、量子點(diǎn)材料生長技術(shù),圖形化襯底和不同取向晶面選擇生長技術(shù),單原子操縱和加工技術(shù),納米結(jié)構(gòu)的輻照制備技術(shù),及其在沸石的籠子中、納米碳管和溶液中等通過物理或化學(xué)方法制備量子點(diǎn)和量子線的技術(shù)等。目前發(fā)展的主要趨勢是尋找原子級無損傷加工方法和納米結(jié)構(gòu)的應(yīng)變自組裝可控生長技術(shù),以求獲得大小、形狀均勻、密度可控的無缺陷納米結(jié)構(gòu)。
2.5寬帶隙半導(dǎo)體材料
寬帶隙半導(dǎo)體材主要指的是金剛石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶體等,特別是SiC、GaN和金剛石薄膜等材料,因具有高熱導(dǎo)率、高電子飽和漂移速度和大臨界擊穿電壓等特點(diǎn),成為研制高頻大功率、耐高溫、抗輻照半導(dǎo)體微電子器件和電路的理想材料;在通信、汽車、航空、航天、石油開采以及國防等方面有著廣泛的應(yīng)用前景。另外,III族氮化物也是很好的光電子材料,在藍(lán)、綠光發(fā)光二極管(LED)和紫、藍(lán)、綠光激光器(LD)以及紫外探測器等應(yīng)用方面也顯示了廣泛的應(yīng)用前景。隨著1993年GaN材料的P型摻雜突破,GaN基材料成為藍(lán)綠光發(fā)光材料的研究熱點(diǎn)。目前,GaN基藍(lán)綠光發(fā)光二極管己商品化,GaN基LD也有商品出售,最大輸出功率為0.5W。在微電子器件研制方面,GaN基FET的最高工作頻率(fmax)已達(dá)140GHz,fT=67GHz,跨導(dǎo)為260ms/mm;HEMT器件也相繼問世,發(fā)展很快。此外,256×256GaN基紫外光電焦平面陣列探測器也已研制成功。特別值得提出的是,日本Sumitomo電子工業(yè)有限公司2000年宣稱,他們采用熱力學(xué)方法已研制成功2英寸GaN單晶材料,這將有力的推動(dòng)藍(lán)光激光器和GaN基電子器件的發(fā)展。另外,近年來具有反常帶隙彎曲的窄禁帶InAsN,InGaAsN,GaNP和GaNAsP材料的研制也受到了重視,這是因?yàn)樗鼈冊陂L波長光通信用高T0光源和太陽能電池等方面顯示了重要應(yīng)用前景。
以Cree公司為代表的體SiC單晶的研制已取得突破性進(jìn)展,2英寸的4H和6HSiC單晶與外延片,以及3英寸的4HSiC單晶己有商品出售;以SiC為GaN基材料襯低的藍(lán)綠光LED業(yè)已上市,并參于與以藍(lán)寶石為襯低的GaN基發(fā)光器件的竟?fàn)帯F渌鸖iC相關(guān)高溫器件的研制也取得了長足的進(jìn)步。目前存在的主要問題是材料中的缺陷密度高,且價(jià)格昂貴。
II-VI族蘭綠光材料研制在徘徊了近30年后,于1990年美國3M公司成功地解決了II-VI族的P型摻雜難點(diǎn)而得到迅速發(fā)展。1991年3M公司利用MBE技術(shù)率先宣布了電注入(Zn,Cd)Se/ZnSe蘭光激光器在77K(495nm)脈沖輸出功率100mW的消息,開始了II-VI族蘭綠光半導(dǎo)體激光(材料)器件研制的。經(jīng)過多年的努力,目前ZnSe基II-VI族蘭綠光激光器的壽命雖已超過1000小時(shí),但離使用差距尚大,加之GaN基材料的迅速發(fā)展和應(yīng)用,使II-VI族蘭綠光材料研制步伐有所變緩。提高有源區(qū)材料的完整性,特別是要降低由非化學(xué)配比導(dǎo)致的點(diǎn)缺陷密度和進(jìn)一步降低失配位錯(cuò)和解決歐姆接觸等問題,仍是該材料體系走向?qū)嵱没氨仨氁鉀Q的問題。
寬帶隙半導(dǎo)體異質(zhì)結(jié)構(gòu)材料往往也是典型的大失配異質(zhì)結(jié)構(gòu)材料,所謂大失配異質(zhì)結(jié)構(gòu)材料是指晶格常數(shù)、熱膨脹系數(shù)或晶體的對稱性等物理參數(shù)有較大差異的材料體系,如GaN/藍(lán)寶石(Sapphire),SiC/Si和GaN/Si等。大晶格失配引發(fā)界面處大量位錯(cuò)和缺陷的產(chǎn)生,極大地影響著微結(jié)構(gòu)材料的光電性能及其器件應(yīng)用。如何避免和消除這一負(fù)面影響,是目前材料制備中的一個(gè)迫切要解決的關(guān)鍵科學(xué)問題。這個(gè)問題的解泱,必將大大地拓寬材料的可選擇余地,開辟新的應(yīng)用領(lǐng)域。
目前,除SiC單晶襯低材料,GaN基藍(lán)光LED材料和器件已有商品出售外,大多數(shù)高溫半導(dǎo)體材料仍處在實(shí)驗(yàn)室研制階段,不少影響這類材料發(fā)展的關(guān)鍵問題,如GaN襯底,ZnO單晶簿膜制備,P型摻雜和歐姆電極接觸,單晶金剛石薄膜生長與N型摻雜,II-VI族材料的退化機(jī)理等仍是制約這些材料實(shí)用化的關(guān)鍵問題,國內(nèi)外雖已做了大量的研究,至今尚未取得重大突破。
3光子晶體
光子晶體是一種人工微結(jié)構(gòu)材料,介電常數(shù)周期的被調(diào)制在與工作波長相比擬的尺度,來自結(jié)構(gòu)單元的散射波的多重干涉形成一個(gè)光子帶隙,與半導(dǎo)體材料的電子能隙相似,并可用類似于固態(tài)晶體中的能帶論來描述三維周期介電結(jié)構(gòu)中光波的傳播,相應(yīng)光子晶體光帶隙(禁帶)能量的光波模式在其中的傳播是被禁止的。如果光子晶體的周期性被破壞,那么在禁帶中也會(huì)引入所謂的“施主”和“受主”模,光子態(tài)密度隨光子晶體維度降低而量子化。如三維受限的“受主”摻雜的光子晶體有希望制成非常高Q值的單模微腔,從而為研制高質(zhì)量微腔激光器開辟新的途徑。光子晶體的制備方法主要有:聚焦離子束(FIB)結(jié)合脈沖激光蒸發(fā)方法,即先用脈沖激光蒸發(fā)制備如Ag/MnO多層膜,再用FIB注入隔離形成一維或二維平面陣列光子晶體;基于功能粒子(磁性納米顆粒Fe2O3,發(fā)光納米顆粒CdS和介電納米顆粒TiO2)和共軛高分子的自組裝方法,可形成適用于可見光范圍的三維納米顆粒光子晶體;二維多空硅也可制作成一個(gè)理想的3-5μm和1.5μm光子帶隙材料等。目前,二維光子晶體制造已取得很大進(jìn)展,但三維光子晶體的研究,仍是一個(gè)具有挑戰(zhàn)性的課題。最近,Campbell等人提出了全息光柵光刻的方法來制造三維光子晶體,取得了進(jìn)展。
4量子比特構(gòu)建與材料
隨著微電子技術(shù)的發(fā)展,計(jì)算機(jī)芯片集成度不斷增高,器件尺寸越來越?。╪m尺度)并最終將受到器件工作原理和工藝技術(shù)限制,而無法滿足人類對更大信息量的需求。為此,發(fā)展基于全新原理和結(jié)構(gòu)的功能強(qiáng)大的計(jì)算機(jī)是21世紀(jì)人類面臨的巨大挑戰(zhàn)之一。1994年Shor基于量子態(tài)疊加性提出的量子并行算法并證明可輕而易舉地破譯目前廣泛使用的公開密鑰Rivest,Shamir和Adlman(RSA)體系,引起了人們的廣泛重視。
所謂量子計(jì)算機(jī)是應(yīng)用量子力學(xué)原理進(jìn)行計(jì)算的裝置,理論上講它比傳統(tǒng)計(jì)算機(jī)有更快的運(yùn)算速度,更大信息傳遞量和更高信息安全保障,有可能超越目前計(jì)算機(jī)理想極限。實(shí)現(xiàn)量子比特構(gòu)造和量子計(jì)算機(jī)的設(shè)想方案很多,其中最引人注目的是Kane最近提出的一個(gè)實(shí)現(xiàn)大規(guī)模量子計(jì)算的方案。其核心是利用硅納米電子器件中磷施主核自旋進(jìn)行信息編碼,通過外加電場控制核自旋間相互作用實(shí)現(xiàn)其邏輯運(yùn)算,自旋測量是由自旋極化電子電流來完成,計(jì)算機(jī)要工作在mK的低溫下。
這種量子計(jì)算機(jī)的最終實(shí)現(xiàn)依賴于與硅平面工藝兼容的硅納米電子技術(shù)的發(fā)展。除此之外,為了避免雜質(zhì)對磷核自旋的干擾,必需使用高純(無雜質(zhì))和不存在核自旋不等于零的硅同位素(29Si)的硅單晶;減小SiO2絕緣層的無序漲落以及如何在硅里摻入規(guī)則的磷原子陣列等是實(shí)現(xiàn)量子計(jì)算的關(guān)鍵。量子態(tài)在傳輸,處理和存儲過程中可能因環(huán)境的耦合(干擾),而從量子疊加態(tài)演化成經(jīng)典的混合態(tài),即所謂失去相干,特別是在大規(guī)模計(jì)算中能否始終保持量子態(tài)間的相干是量子計(jì)算機(jī)走向?qū)嵱没八匦杩朔碾y題。
5發(fā)展我國半導(dǎo)體材料的幾點(diǎn)建議
鑒于我國目前的工業(yè)基礎(chǔ),國力和半導(dǎo)體材料的發(fā)展水平,提出以下發(fā)展建議供參考。
5.1硅單晶和外延材料
硅材料作為微電子技術(shù)的主導(dǎo)地位至少到本世紀(jì)中葉都不會(huì)改變,至今國內(nèi)各大集成電路制造廠家所需的硅片基本上是依賴進(jìn)口。目前國內(nèi)雖已可拉制8英寸的硅單晶和小批量生產(chǎn)6英寸的硅外延片,然而都未形成穩(wěn)定的批量生產(chǎn)能力,更談不上規(guī)模生產(chǎn)。建議國家集中人力和財(cái)力,首先開展8英寸硅單晶實(shí)用化和6英寸硅外延片研究開發(fā),在“十五”的后期,爭取做到8英寸集成電路生產(chǎn)線用硅單晶材料的國產(chǎn)化,并有6~8英寸硅片的批量供片能力。到2010年左右,我國應(yīng)有8~12英寸硅單晶、片材和8英寸硅外延片的規(guī)模生產(chǎn)能力;更大直徑的硅單晶、片材和外延片也應(yīng)及時(shí)布點(diǎn)研制。另外,硅多晶材料生產(chǎn)基地及其相配套的高純石英、氣體和化學(xué)試劑等也必需同時(shí)給以重視,只有這樣,才能逐步改觀我國微電子技術(shù)的落后局面,進(jìn)入世界發(fā)達(dá)國家之林。
5.2GaAs及其有關(guān)化合物半導(dǎo)體單晶
材料發(fā)展建議
GaAs、InP等單晶材料同國外的差距主要表現(xiàn)在拉晶和晶片加工設(shè)備落后,沒有形成生產(chǎn)能力。相信在國家各部委的統(tǒng)一組織、領(lǐng)導(dǎo)下,并爭取企業(yè)介入,建立我國自己的研究、開發(fā)和生產(chǎn)聯(lián)合體,取各家之長,分工協(xié)作,到2010年趕上世界先進(jìn)水平是可能的。要達(dá)到上述目的,到“十五”末應(yīng)形成以4英寸單晶為主2-3噸/年的SI-GaAs和3-5噸/年摻雜GaAs、InP單晶和開盒就用晶片的生產(chǎn)能力,以滿足我國不斷發(fā)展的微電子和光電子工業(yè)的需術(shù)。到2010年,應(yīng)當(dāng)實(shí)現(xiàn)4英寸GaAs生產(chǎn)線的國產(chǎn)化,并具有滿足6英寸線的供片能力。
5.3發(fā)展超晶格、量子阱和一維、零維半導(dǎo)體
微結(jié)構(gòu)材料的建議
(1)超晶格、量子阱材料
從目前我國國力和我們已有的基礎(chǔ)出發(fā),應(yīng)以三基色(超高亮度紅、綠和藍(lán)光)材料和光通信材料為主攻方向,并兼顧新一代微電子器件和電路的需求,加強(qiáng)MBE和MOCVD兩個(gè)基地的建設(shè),引進(jìn)必要的適合批量生產(chǎn)的工業(yè)型MBE和MOCVD設(shè)備并著重致力于GaAlAs/GaAs,InGaAlP/InGaP,GaN基藍(lán)綠光材料,InGaAs/InP和InGaAsP/InP等材料體系的實(shí)用化研究是當(dāng)務(wù)之急,爭取在“十五”末,能滿足國內(nèi)2、3和4英寸GaAs生產(chǎn)線所需要的異質(zhì)結(jié)材料。到2010年,每年能具備至少100萬平方英寸MBE和MOCVD微電子和光電子微結(jié)構(gòu)材料的生產(chǎn)能力。達(dá)到本世紀(jì)初的國際水平。
寬帶隙高溫半導(dǎo)體材料如SiC,GaN基微電子材料和單晶金剛石薄膜以及ZnO等材料也應(yīng)擇優(yōu)布點(diǎn),分別做好研究與開發(fā)工作。
(2)一維和零維半導(dǎo)體材料的發(fā)展設(shè)想?;诘途S半導(dǎo)體微結(jié)構(gòu)材料的固態(tài)納米量子器件,目前雖然仍處在預(yù)研階段,但極其重要,極有可能觸發(fā)微電子、光電子技術(shù)新的革命。低維量子器件的制造依賴于低維結(jié)構(gòu)材料生長和納米加工技術(shù)的進(jìn)步,而納米結(jié)構(gòu)材料的質(zhì)量又很大程度上取決于生長和制備技術(shù)的水平。因而,集中人力、物力建設(shè)我國自己的納米科學(xué)與技術(shù)研究發(fā)展中心就成為了成敗的關(guān)鍵。具體目標(biāo)是,“十五”末,在半導(dǎo)體量子線、量子點(diǎn)材料制備,量子器件研制和系統(tǒng)集成等若干個(gè)重要研究方向接近當(dāng)時(shí)的國際先進(jìn)水平;2010年在有實(shí)用化前景的量子點(diǎn)激光器,量子共振隧穿器件和單電子器件及其集成等研發(fā)方面,達(dá)到國際先進(jìn)水平,并在國際該領(lǐng)域占有一席之地??梢灶A(yù)料,它的實(shí)施必將極大地增強(qiáng)我國的經(jīng)濟(jì)和國防實(shí)力。
篇10
作者:李俊杰 單位:貴州大學(xué)科技學(xué)院電子信息科學(xué)與技術(shù)
第一電子科學(xué)與技術(shù)對于國家經(jīng)濟(jì)發(fā)展、科技進(jìn)步和國防建設(shè)都具有重要的戰(zhàn)略意義。今天,面對電子科學(xué)與技術(shù)的迅猛發(fā)展,世界上許多發(fā)達(dá)國家,像美國、德國、日本、英國、法國等,都競相將微電子技術(shù)和光電子技術(shù)引入國家發(fā)展計(jì)劃。我國對微電子技術(shù)和光電子技術(shù)的研究給予了高度重視,在多項(xiàng)國家級戰(zhàn)略性科技計(jì)劃中,如“863計(jì)劃”、“973計(jì)劃”、國家攻關(guān)計(jì)劃中微電子技術(shù)(集成電路技術(shù))和光電子技術(shù)(激光技術(shù))都有立項(xiàng);1995年,原電子工業(yè)部提出了“九五”集成電路發(fā)展戰(zhàn)略,并實(shí)施了“909工程”;國家自然科學(xué)基金委員會(huì)在1996年底立項(xiàng)開展“光子學(xué)與光子技術(shù)發(fā)展戰(zhàn)略”研究;在“九五”和“十五”期間,國家自然科學(xué)基金委員會(huì)在重大、重點(diǎn)和杰出青年基金中對電子科學(xué)與技術(shù)方面的立項(xiàng)給予了足夠的重視和支持。在全國電子科學(xué)與技術(shù)的科研、教學(xué)、生產(chǎn)和使用單位的共同努力下,我國已經(jīng)形成了門類齊全、水平先進(jìn)、應(yīng)用廣泛的微電子和光電子技術(shù)的科學(xué)研究領(lǐng)域,并在產(chǎn)業(yè)化方面形成了一定規(guī)模,取得了可喜的進(jìn)步,為我國的科學(xué)技術(shù)、國民經(jīng)濟(jì)和國防建設(shè)做出了積極貢獻(xiàn),在國際上了也爭得了一席之地。但是我們應(yīng)該清醒地看到,在電子科學(xué)與技術(shù)領(lǐng)域,我國與世界上發(fā)達(dá)國家的先進(jìn)水平仍有不小的差距,特別在微電子技術(shù)方面的差距更大。這既有歷史、體制、技術(shù)、工藝和資金方面的原因,也有各個(gè)層次所需專業(yè)人才短缺的原因。為了我國電子科學(xué)與技術(shù)事業(yè)的可持續(xù)發(fā)展和搶占該領(lǐng)域中高新技術(shù)的制高點(diǎn),就必須統(tǒng)籌教育、科研、開發(fā)、人才、資金和市場等各種資源和要素,其中人才培養(yǎng)是極其重要的一個(gè)環(huán)節(jié)。在新的歷史條件下,開展電子科學(xué)與技術(shù)專業(yè)發(fā)展戰(zhàn)略研究是非常必要的,這對于建立學(xué)科專業(yè)規(guī)范,培養(yǎng)出具有知識、能力、素質(zhì)協(xié)調(diào)發(fā)展的,適合我國電子科學(xué)與技術(shù)領(lǐng)域不同層次發(fā)展要求的有用人才具有重要指導(dǎo)意義和戰(zhàn)略意義。二、電子科學(xué)與技術(shù)專業(yè)發(fā)展簡史電子科學(xué)與技術(shù)專業(yè)中微電子技術(shù)和光電子技術(shù)的前身是半導(dǎo)體專業(yè)和激光專業(yè)。
1947年美國貝爾實(shí)驗(yàn)室發(fā)明了晶體管,開創(chuàng)了固體電子技術(shù)時(shí)代。根據(jù)國外發(fā)展電子器件的進(jìn)程,我國在1956年提出了“向科學(xué)進(jìn)軍”,將半導(dǎo)體技術(shù)列為重點(diǎn)發(fā)展的領(lǐng)域之一。同年,中科院應(yīng)用物理所首先舉辦了半導(dǎo)體器件短期培訓(xùn)班,請回國的半導(dǎo)體專家黃昆、吳錫九、黃敞、林蘭英、王守武、成眾志等講授半導(dǎo)體理論、晶體管制造技術(shù)和半導(dǎo)體線路。由北京大學(xué)、復(fù)旦大學(xué)、吉林大學(xué)、廈門大學(xué)和南京大學(xué)五所大學(xué)聯(lián)合開辦了半導(dǎo)體物理專業(yè);在工科院校,清華大學(xué)率先開辦了半導(dǎo)體專業(yè)。1957年,中國科學(xué)院在長春建立了第一個(gè)光學(xué)精密儀器機(jī)械研究所。
1964年,中國科學(xué)院在上海建立了當(dāng)時(shí)世界上第一所激光技術(shù)專業(yè)研究所──上海光學(xué)精密機(jī)械研究所。電子工業(yè)部成立了從事激光與紅外研究的11所等。這些國家研究所是早期培養(yǎng)光電子技術(shù)高層次研究型人才的搖籃。到了1970年前后,隨著對半導(dǎo)體器件需求量的增加,尤其是大型電子計(jì)算機(jī)對集成電路需求的推動(dòng),促進(jìn)了國內(nèi)半導(dǎo)體工業(yè)的發(fā)展以及對專業(yè)人才的需求,全國很多高校都先后增加了半導(dǎo)體物理與器件專業(yè)。進(jìn)入20世紀(jì)80年代,由于國內(nèi)半導(dǎo)體器件和集成電路生產(chǎn)還缺乏競爭力,受到進(jìn)口元器件的沖擊,很多半導(dǎo)體器件廠下馬或轉(zhuǎn)產(chǎn),市場不景氣導(dǎo)致了很多高校的半導(dǎo)體專業(yè)被迫取消,專業(yè)萎縮。進(jìn)入20世紀(jì)90年代,由于微型計(jì)算機(jī)、通信、家電等信息產(chǎn)業(yè)的發(fā)展和普及,對集成電路芯片的需求量越來越大,此外幾場局部戰(zhàn)爭讓全世界接受了電子戰(zhàn)、信息戰(zhàn)的高科技戰(zhàn)爭的理念。微電子技術(shù)得到了前所未有的重視,半導(dǎo)體技術(shù)專業(yè)由此更名為微電子技術(shù)專業(yè)。為了在信息時(shí)代和高科技領(lǐng)域趕上國際先進(jìn)水平,國家加大了對微電子技術(shù)行業(yè)的支持力度,并不斷吸引外資,市場對微電子技術(shù)專業(yè)畢業(yè)生的需求不斷增加,從而迎來了微電子技術(shù)專業(yè)發(fā)展的新高峰。隨著20世紀(jì)60年代激光技術(shù)的飛速發(fā)展,我國在1971年,由清華大學(xué)、北京大學(xué)、天津大學(xué)、中國科技大學(xué)、哈爾濱工業(yè)大學(xué)、西北電訊工程學(xué)院、北京工業(yè)學(xué)院、華中工學(xué)院、成都電訊工程學(xué)院等院校在科學(xué)研究的基礎(chǔ)上,成立了激光專業(yè),后來又有多所學(xué)校相繼成立了激光專業(yè)。
1985年,根據(jù)原國家教委頒布的專業(yè)目錄,將激光專業(yè)和紅外光譜學(xué)合并,更名為光電子技術(shù)專業(yè)。為了拓寬專業(yè)口徑和與國際接軌,教育部1998年4月頒布了新的本科專業(yè)目錄和引導(dǎo)性專業(yè)目錄,將原微電子技術(shù)、光電子技術(shù)、物理電子技術(shù)、電子材料與元器件和電磁場與微波等本科專業(yè)整合為一級學(xué)科“電子科學(xué)與技術(shù)”。近年來,許多高校都紛紛建立電子科學(xué)與技術(shù)專業(yè)。各學(xué)校的辦學(xué)特點(diǎn)不盡相同,但主要培養(yǎng)目標(biāo)均是培養(yǎng)適應(yīng)社會(huì)主義現(xiàn)代化建設(shè)需要的、德智體美等全面發(fā)展的高層次電子科學(xué)與技術(shù)人才。目前,設(shè)有電子科學(xué)與技術(shù)專業(yè)的院校有111所。21世紀(jì)被稱為信息時(shí)代,電子科學(xué)與技術(shù)在信息、能源、材料、航天、生命、環(huán)境、軍事和民用等科技領(lǐng)域?qū)@得更廣泛的應(yīng)用,必然導(dǎo)致電子科學(xué)與產(chǎn)業(yè)的迅猛發(fā)展。這種產(chǎn)業(yè)化趨勢反過來對本專業(yè)的鞏固、深化、提高和發(fā)展起到積極的促進(jìn)作用。因此,電子科學(xué)與專業(yè)具有良好的發(fā)展空間和態(tài)勢。
熱門標(biāo)簽
光電技術(shù)論文 光電傳感器 光電工程論文 光電 光電技術(shù)專業(yè) 光電子 光電互感器 心理培訓(xùn) 人文科學(xué)概論
相關(guān)文章
1光電產(chǎn)業(yè)園區(qū)污水處理廠工藝分析
4光電專業(yè)綜合課程設(shè)計(jì)實(shí)踐教學(xué)研究