高中數(shù)學(xué)課堂設(shè)計論文
時間:2022-07-24 10:15:00
導(dǎo)語:高中數(shù)學(xué)課堂設(shè)計論文一文來源于網(wǎng)友上傳,不代表本站觀點(diǎn),若需要原創(chuàng)文章可咨詢客服老師,歡迎參考。
論文關(guān)鍵詞:高中數(shù)學(xué)課堂教學(xué)教學(xué)設(shè)計
論文摘要:本文作者就高中教材中兩條直線的位置關(guān)系。從教學(xué)背景分析、教法學(xué)法分析和教學(xué)過程與設(shè)計三方面闡述了對這節(jié)課的教學(xué)設(shè)計。
一、教學(xué)背景分析
1.教材結(jié)構(gòu)分析。“兩直線的位置關(guān)系”安排在《全日制普通高級中學(xué)教科書(必修)數(shù)學(xué)》第二冊(上)第七章第3節(jié)第一課時。主要內(nèi)容是兩直線平行與垂直條件的推導(dǎo)和公式的應(yīng)用。從初中平面解析幾何中平行和垂直的定性過渡到高中解析幾何的定量計算。它是學(xué)生在研究了直線傾斜角、斜率、直線方程的基礎(chǔ)上學(xué)習(xí)的又一平面解析幾何的基礎(chǔ)知識。本節(jié)的研究,將直接影響以后的曲線方程、導(dǎo)數(shù)、微分等的進(jìn)一步學(xué)習(xí),貫穿于高中教學(xué)的始終,具有承上啟下的作用。
2.學(xué)情分析。兩條直線位置關(guān)系的探究是學(xué)生在已經(jīng)掌握了三角函數(shù)、平面向量的基礎(chǔ)上進(jìn)行的。說明學(xué)生已具備了一定的利用代數(shù)方法研究幾何問題的能力。但由于學(xué)生接觸平面解析幾何的時間還不長學(xué)習(xí)程度較淺,特別是處理抽象問題的能力還有待提高,在學(xué)習(xí)過程中可能會出現(xiàn)困難。因此,教師要在今后的教學(xué)滾動中逐步深化,使之和學(xué)生的知識結(jié)構(gòu)同步發(fā)展完善。
3.教學(xué)目標(biāo)。(1)知識和技能目標(biāo)。①理解兩條直線平行與垂直充要條件的推導(dǎo)、公式及應(yīng)用。②能夠根據(jù)直線的方程判斷兩條直線的位置關(guān)系。(2)過程與方法目標(biāo)。①通過探索兩條直線平行或垂直的充要條件和推導(dǎo)過程,培養(yǎng)學(xué)生“會觀察”、“敢歸納”、“善建構(gòu)”的邏輯思維能力,滲透算法的思想。②通過靈活運(yùn)用公式的過程,提高學(xué)生類比化歸、數(shù)形結(jié)合的能力。(3)情感態(tài)度和價值目標(biāo)。徐利治先生曾指出:“數(shù)學(xué)教育與數(shù)學(xué)教學(xué)的目標(biāo)之一,應(yīng)當(dāng)讓學(xué)生獲得對數(shù)學(xué)美的審美能力,從而既有利于激發(fā)他們對數(shù)學(xué)科學(xué)的愛好,又有助于增長他們的創(chuàng)造發(fā)明能力。”因此,培養(yǎng)學(xué)生主動探究知識、合作交流的意識,在體驗數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣即成為本節(jié)的情感目標(biāo)。
4.教學(xué)重點(diǎn)與難點(diǎn).
根據(jù)學(xué)生現(xiàn)狀、教學(xué)目標(biāo)及教材內(nèi)容分析,確立本節(jié)課的教學(xué)重點(diǎn)為兩條直線垂直和平行的條件。一個定理、公式的運(yùn)用固然重要,但更重要的是要充分挖掘吸收定理公式推導(dǎo)過程中所蘊(yùn)含的數(shù)學(xué)思想與方法,通過啟發(fā)學(xué)生用平行線同位角關(guān)系的判定、性質(zhì)定理,以及傾斜角、斜率的對應(yīng)關(guān)系探求兩直線平行與垂直的充要條件,引導(dǎo)學(xué)生理清思考脈絡(luò),培養(yǎng)學(xué)生勤于動腦、勇于探索的精神。
教學(xué)難點(diǎn)為兩直線平行與垂直問題轉(zhuǎn)化為與兩直線斜率的關(guān)系問題。突破難點(diǎn)的戈鍵足在設(shè)計j-采Hj了南特殊到一般、從具體到捕象的敦學(xué)策略,利片J類比歸納的思想,由淺人深,讓學(xué)生自主探究,分析發(fā)現(xiàn)兩百線平、幣直的規(guī)律
二、教法學(xué)法分析
1.教法分析?;诒竟?jié)通過引導(dǎo)學(xué)生了解數(shù)形結(jié)合數(shù)學(xué)方法,我采肘合作探究式教學(xué)法及類比發(fā)現(xiàn)式教學(xué)模式,對數(shù)學(xué)知識結(jié)構(gòu)進(jìn)行創(chuàng)造性的“教學(xué)加lI”,將教材中單一、靜態(tài)的數(shù)學(xué)知識轉(zhuǎn)化為學(xué)生多樣、動態(tài)的思號我用環(huán)環(huán)相扣的問題將探究活動層層深入,使課堂教學(xué)體現(xiàn)“參與式”、“生活化”、“探索性”,促進(jìn)學(xué)生和諧、F{主、個性化發(fā)展。
2.學(xué)法分析。我讓學(xué)生通過觀察直線萬程的特點(diǎn).將初巾學(xué)過的兩直線平行和垂直的判定定理和性質(zhì)轉(zhuǎn)化成坐標(biāo)系中的語言,用斜率重新刻有關(guān)條件;并啟發(fā)學(xué)生用平面幾何巾平行線與同位角關(guān)系的判定定理和性質(zhì)定理.以及傾斜角與斜率的對應(yīng)關(guān)系.由學(xué)生自己得兩條直線平行和垂直的充要條件.使學(xué)生在思維訓(xùn)練的過程巾,感受數(shù)學(xué)知識的魅力,成為學(xué)習(xí)的主人..
三、教學(xué)過程與設(shè)計
教學(xué)于段:幾何J面板、汁算機(jī)課件輔助教學(xué)。
1.復(fù)習(xí)舊知,以舊悟新。(1)復(fù)習(xí)初巾的平面幾何知識。(2)自問自答:為什么我們現(xiàn)在義要來學(xué)習(xí)兩條直線的位置關(guān)系呢?因為我們現(xiàn)存學(xué)習(xí)平面解析幾何,所以就可以在直角坐標(biāo)系中把直線的方程建立起來。也就是說存前而引入了斜率、點(diǎn)斜式、斜截式等概念后,我們就能夠用代數(shù)的方法來討論一些幾何的問題,所以,怎樣通過兩直線方稗的特點(diǎn)來判斷兩直線平彳了與垂冉的位置關(guān)系呢?這就是我們這節(jié)課討論問題的主要任務(wù)日的:我通過對已有知識的同顧和深入分析,以問題制造懸念、帶著問題走進(jìn)課堂,讓學(xué)生主動去探究問題,體驗知識發(fā)生發(fā)展的過程。
2.提出問題,尋找規(guī)律。第…部分為新知的發(fā)現(xiàn)奠定基礎(chǔ)后,我分別給出兩組平行的直線.讓學(xué)生自己做.然后在自主合作的探究氛同中思考、質(zhì)疑、傾聽、表述。我利用幾何板工具引導(dǎo)學(xué)生觀察同位角、傾斜角、斜率的對應(yīng)關(guān)系,引導(dǎo)葉1溉說明了平行條件的證明,又回避了教材巾單獨(dú)的、枯燥的證明.然后巧妙地加以引導(dǎo)、點(diǎn)撥.放大到兩條直線垂直關(guān)系的探究上。目的:由特殊到一般,由具體到抽象,南低級到高級的認(rèn)知順序引出平行的充要條件,學(xué)生比較容易接受,同時激發(fā)學(xué)生發(fā)現(xiàn)平行充要條件的強(qiáng)烈欲望。
3.深入探究.獲得新知。(1)創(chuàng)設(shè)問題:平行的時候,學(xué)生能夠把直線的平行轉(zhuǎn)化為討論直線方程的斜率來判定.同樣的我們能否用斜率來討論兩直線的垂直關(guān)系呢?(2)分別給出兩組垂直的直線,讓學(xué)生自己作圖、發(fā)現(xiàn)規(guī)律。在討論巾提醒學(xué)生:若兩直線的斜率存在,他們之間有何關(guān)系?用量角器或三角形來量一下面出的圖形的夾角有什么特點(diǎn)?(3)根據(jù)高二年級學(xué)生的學(xué)習(xí)狀況和認(rèn)知規(guī)律,我給出幾組直線的數(shù)據(jù)讓學(xué)生利用其發(fā)現(xiàn)的規(guī)律來驗證,將教學(xué)信息及時反饋給教師(4)教師教學(xué)講究深入淺出,對于本課的教學(xué)難點(diǎn),待學(xué)生發(fā)現(xiàn)了規(guī)律后引導(dǎo)其利用向量知識來證明.讓學(xué)生達(dá)到從感性認(rèn)識上升到理性認(rèn)識的平衡。
目的:現(xiàn)代教學(xué)論指出:“教學(xué)是師生的多邊活動,在教師的‘反饋一控制’的同時.每個學(xué)生也都在進(jìn)行著微觀的‘反饋一控制’?!遍W此,教師要及時掌握學(xué)生接受知識的程度,從而進(jìn)行有效淵控。對平行和垂直的討論中,我鼓勵學(xué)生將其討論的結(jié)果以分享的方式和大家交流.構(gòu)造這樣一種雙向交流、寬松的環(huán)境組織教學(xué),既鍛煉他們的表達(dá)能力,又培養(yǎng)他們的數(shù)學(xué)思維能力。
4.應(yīng)用舉例,鞏固提高。我通過例題來進(jìn)一步鞏固達(dá)到講與練的平衡。引導(dǎo)討論,質(zhì)疑解惑,在開放的情景中推進(jìn)教學(xué)過程,在點(diǎn)評聚焦中形成知識要義。選的例題難度控制在大部分學(xué)生能接受的范圍.分析各組題時讓學(xué)生先養(yǎng)成找出平行與垂直充要條件的習(xí)慣,以突破學(xué)習(xí)難點(diǎn)。
5.總結(jié)反饋,拓展引申。講評結(jié)束時為加深對數(shù)學(xué)本質(zhì)的理解,我讓學(xué)生反思。概括出本堂課的學(xué)習(xí)內(nèi)容:平行與垂直的條件;應(yīng)注意哪些問題;怎樣根據(jù)直線的方程判斷兩條直線的位置關(guān)系。新理念下高中數(shù)學(xué)課堂教學(xué)的探索是一個長期的過程,充分挖掘數(shù)學(xué)的應(yīng)用價值、思維價值和人文價值,需要我們不斷創(chuàng)新,與時俱進(jìn)。